Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 847
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(5): e1011115, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155680

RESUMO

BACKGROUND: Chagas disease, a vector-borne parasitic disease caused by Trypanosoma cruzi, affects millions in the Americas. Dogs are important reservoirs of the parasite. Under laboratory conditions, canine treatment with the systemic insecticide fluralaner demonstrated efficacy in killing Triatoma infestans and T. brasiliensis, T. cruzi vectors, when they feed on dogs. This form of pest control is called xenointoxication. However, T. cruzi can also be transmitted orally when mammals ingest infected bugs, so there is potential for dogs to become infected upon consuming infected bugs killed by the treatment. Xenointoxication thereby has two contrasting effects on dogs: decreasing the number of insects feeding on the dogs but increasing opportunities for exposure to T. cruzi via oral transmission to dogs ingesting infected insects. OBJECTIVE: Examine the potential for increased infection rates of T. cruzi in dogs following xenointoxication. DESIGN/METHODS: We built a deterministic mathematical model, based on the Ross-MacDonald malaria model, to investigate the net effect of fluralaner treatment on the prevalence of T. cruzi infection in dogs in different epidemiologic scenarios. We drew upon published data on the change in percentage of bugs killed that fed on treated dogs over days post treatment. Parameters were adjusted to mimic three scenarios of T. cruzi transmission: high and low disease prevalence and domestic vectors, and low disease prevalence and sylvatic vectors. RESULTS: In regions with high endemic disease prevalence in dogs and domestic vectors, prevalence of infected dogs initially increases but subsequently declines before eventually rising back to the initial equilibrium following one fluralaner treatment. In regions of low prevalence and domestic or sylvatic vectors, however, treatment seems to be detrimental. In these regions our models suggest a potential for a rise in dog prevalence, due to oral transmission from dead infected bugs. CONCLUSION: Xenointoxication could be a beneficial and novel One Health intervention in regions with high prevalence of T. cruzi and domestic vectors. In regions with low prevalence and domestic or sylvatic vectors, there is potential harm. Field trials should be carefully designed to closely follow treated dogs and include early stopping rules if incidence among treated dogs exceeds that of controls.


Assuntos
Doença de Chagas , Inseticidas , Triatoma , Trypanosoma cruzi , Animais , Cães , Insetos Vetores , Doença de Chagas/epidemiologia , Doença de Chagas/prevenção & controle , Doença de Chagas/veterinária , Triatoma/parasitologia , Inseticidas/farmacologia , Mamíferos
2.
Mem Inst Oswaldo Cruz ; 118: e220289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531507

RESUMO

BACKGROUND: Triatoma infestans (Kissing bug) is the main vector of the parasite causative of Chagas disease in Latin-America. This species shows clear activity rhythms easily synchronised to day-night cycles (photic cycle). The haematophagous nature of these insects lead us to think that they may temporally adapt to the particular activity rhythms of potential hosts (non-photic cycle). Our previous data showed that kissing bugs were weakly affected by the activity-inactivity rhythm of a single host. OBJETIVE: To determine if by increasing the number of individuals of a potential host, T. infestans could increase the likelihood of synchronisation. METHODS: Individual activity rhythms of experimental insects, maintained in constant darkness in light-tight cabinets, localised in a room with 24 rodents, were continuously monitored. Another insect group that served as control was maintained in the same conditions but in a room without rodents. FINDINGS: Most of the experimental insects synchronised, expressing a 24 h period coincident with the activity-inactivity rhythms of the rodents, while the controls free ran with a period significantly longer than 24 h. CONCLUSION: Analogous to what happens with high vs low light intensity in photic synchronisers, a high number of rodents, in contrast to the previous one-rodent experiment, increased the potency of this non-photic zeitgeber.


Assuntos
Doença de Chagas , Triatoma , Animais , Triatoma/parasitologia , Doença de Chagas/parasitologia , Comportamento Alimentar , Roedores
3.
Parasitol Res ; 121(7): 2033-2041, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35507065

RESUMO

Investigating parameters influencing natural infections with Trypanosoma cruzi via the skin, the diameters of mouthparts of different stages of triatomines vectors were measured to determine the size of the channel accessible for T. cruzi during cutaneous infection. The mean diameters of the skin-penetrating mandibles of first to fifth instar nymphs of the vector Triatoma infestans increased from 18 to 65 µm. The mean diameter in fourth instar nymphs of Dipetalogaster maxima was 86 µm. Different numbers of isolated vector-derived metacyclic trypomastigotes (10-10,000) were injected intradermally into mice. Prepatent periods, parasitemia and mortality rates were compared with those of mice obtaining 10,000 metacyclic trypomastigotes that are usually present in the first drop of faeces onto the feeding wounds of fifth and fourth instar nymphs of T. infestans and D. maxima, respectively. After injection of 50-10,000 T. cruzi, in all 42 mice the infection developed. An injection of 10 parasites induced an infection in 8 out of 15 mice. With increasing doses of parasites, prepatent periods tended to decrease. The level of parasitemia was higher after injection of the lowest dose. Except for one mouse all infected mice died. After placement of 10,000 metacyclic trypomastigotes onto the feeding wound of fifth or fourth instar nymphs of T. infestans and D. maxima, respectively, the infection rates of the groups, prepatent periods and the levels of parasitemia of T. cruzi in mice indicated that about 10-1,000 metacyclic trypomastigotes entered the skin via this route. For the first time, the present data emphasise the risk of an infection by infectious excreta of triatomines deposited near the feeding wound and the low number of invading parasites.


Assuntos
Doença de Chagas , Parasitos , Triatoma , Trypanosoma cruzi , Animais , Doença de Chagas/parasitologia , Camundongos , Ninfa , Parasitemia/parasitologia , Triatoma/parasitologia
4.
J Vector Borne Dis ; 59(1): 86-90, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35708409

RESUMO

The recently described Triatoma huehuetenanguensis, has been reported in Mexico, Guatemala, Belize and Honduras. In Mexico, the species has been collected primarily in rural areas; it has the potential to colonize human dwellings, however, its contribution to Chagas outbreaks remains unclear. In 2021, T. huehuetenanguensis was first observed at Tuxtla Gutierrez city, Chiapas; then a collection for the species was performed. A total of 308 houses were inspected in the intra and peridomestic structures. Only 3 houses (0.97%) were infested. Triatoma huehuetenangensis was the only triatomine specie recorded and four males were collected. None of the bugs tested positive for Trypanosoma infection. We do not have evidence to suggest that urban human-vector contact still limited, and a possible domestication process is possible. The presence of reservoirs, the vector species and the parasite demonstrate that Tuxtla Gutierrez could be at risk of a Chagas disease outbreak.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Doença de Chagas/epidemiologia , Humanos , Insetos Vetores/parasitologia , Masculino , México/epidemiologia , Triatoma/parasitologia
5.
Trop Med Int Health ; 26(8): 916-926, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33860616

RESUMO

OBJECTIVE: To analyse the ecological and social factors involved in infestation of houses by Triatoma dimidiata in a rural locality of Veracruz, Mexico, where active transmission of the parasite is occurring. METHODS: A survey was applied to the households of the locality to obtain sociodemographic data. In parallel, T. dimidiata insects were collected during one year through community participation. Using PCR, the insects were genotyped, their infection status was assessed, and parasite genotypes infecting the insects were identified. The vector's blood meal sources were identified using a polymerase-heteroduplex chain reaction assay. RESULTS: Seasonal variations in the patterns of infestation by T. dimidiata were observed. An overall infestation rate of 19.46%, a colonisation index of 9.09%, a dispersion rate of 22.15% and a synanthropy index of 80.6% were found. The collected insects were identified as ITS-2 group 2 insects, and a natural infection with T. cruzi of 54.35% was found. TcI and no-TcI genotypes of T. cruzi were found in infected insects. Factors such as rain (P = 0.0006) and temperature (P < 0.0001) were associated with infestation. Analysis of the blood meal sources indicated frequent feeding upon humans and mice. Furthermore, house materials and peridomiciles were found to play an important role in the dynamics of infestation. CONCLUSIONS: The contribution of this study is important for understanding the epidemiology of Chagas disease in rural areas of the state of Veracruz and will help to the establishment of an entomological surveillance system and implementation of prevention and control measures in accordance with the reality of the area.


Assuntos
Doença de Chagas/epidemiologia , Insetos Vetores/parasitologia , Triatoma/parasitologia , Trypanosoma cruzi/parasitologia , Microbiologia da Água , Animais , Doença de Chagas/parasitologia , Características da Família , Feminino , Habitação , Humanos , Masculino , México/epidemiologia , Fatores de Risco , População Rural , Estações do Ano , Inquéritos e Questionários , Tempo (Meteorologia)
6.
Parasitology ; 148(3): 295-301, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32940196

RESUMO

The escape kinetics from the anterior midgut (AM) of Trypanosoma cruzi during the initial steps of infection was assessed in Triatoma infestans, as well as its ability to survive migration in the digestive tract of the vector. All the four strains evaluated survived and reached variable parasite densities. After 49-50 days, YuYu [discrete typing units (DTU) I] strain reached the highest parasite numbers in the rectum followed by Bug (DTU V), CL-Brener (DTU VI) and Dm28c (DTU I). All strains accomplished metacyclogenesis. Bug strain reached the highest numbers of metacyclic trypomastigotes followed by YuYu and CL-Brener/Dm28c. A remarkable parasite reduction in the AM for Bug strain, but not Dm28c was noticed at 72 h of infection. In the posterior midgut + rectum high densities of parasites from both strains were detected at this period indicating the parasites crossed the AM. For Dm28c strain, in infections initiated with trypomastigotes, parasites left AM faster than those starting with epimastigotes. In conclusion, T. cruzi strains from different DTUs were able to infect T. infestans reaching variable parasite densities. The kinetics of migration in the digestive tract may be affected by strain and/or the evolutive form used for infection.


Assuntos
Interações Hospedeiro-Parasita , Insetos Vetores/parasitologia , Triatoma/parasitologia , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Trato Gastrointestinal/parasitologia , Ninfa/parasitologia
7.
Med Vet Entomol ; 35(1): 134-140, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32648329

RESUMO

Many previous studies have shown a great phylogenetic and biological variability of Trypanosoma cruzi using different molecular and biochemical methods. Populations of T. cruzi were initially clustered into two main lineages called TcI and TcII by the size of the mini-exon PCR product. In the present study, 33 isolates derived from three triatomine taxa, which belong to the Triatoma brasiliensis species complex (Triatoma juazeirensis, Triatoma melanica and Triatoma sherlocki); collected in three distinct areas of Bahia state were characterized by PCR. The isolates were identified by the size of the mini-exon gene, 18S rRNA and 24Sα rRNA amplicons. T. cruzi isolates obtained in sylvatic and intradomiciliar ecotopes, derived from T. juazeirensis and T. melanica, were identified as TcI while the parasites originated from T. sherlocki were characterized as TcI and TcII genotypes, respectively. Those species are present in sylvatic ecotopes but are able to infest intradomiciliar areas. Therefore, it would be important to maintain studies in those localities of Bahia and further investigate the possibilities of Chagas disease transmission. Human disease may occur by any T. cruzi genotype and not only by TcII as it is the case in Amazonia.


Assuntos
Genótipo , Triatoma/parasitologia , Trypanosoma cruzi/genética , Animais , Brasil , Éxons , Genes de Protozoários , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Especificidade da Espécie , Trypanosoma cruzi/classificação , Trypanosoma cruzi/isolamento & purificação
8.
Mem Inst Oswaldo Cruz ; 116: e200528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33656141

RESUMO

Panstrongylus geniculatus (Latreille, 1811) is the triatomine with the largest geographic distribution in Latin America. It has been reported in 18 countries from southern Mexico to northern Argentina, including the Caribbean islands. Although most reports indicate that P. geniculatus has wild habitats, this species has intrusive habits regarding human dwellings mainly located in intermediate deforested areas. It is attracted by artificial light from urban and rural buildings, raising the risk of transmission of Trypanosoma cruzi. Despite the wide body of published information on P. geniculatus, many knowledge gaps exist about its biology and epidemiological potential. For this reason, we analysed the literature for P. geniculatus in Scopus, PubMed, Scielo, Google Scholar and the BibTriv3.0 databases to update existing knowledge and provide better information on its geographic distribution, life cycle, genetic diversity, evidence of intrusion and domiciliation, vector-related circulating discrete taxonomic units, possible role in oral T. cruzi transmission, and the effect of climate change on its biology and epidemiology.


Assuntos
Doença de Chagas/transmissão , Insetos Vetores/parasitologia , Panstrongylus/genética , Panstrongylus/parasitologia , Triatoma/parasitologia , Trypanosoma cruzi , Animais , Biologia , Ecologia , Genes de Insetos , Variação Genética/genética , Genótipo , Geografia , Humanos , Insetos Vetores/genética , América Latina , Panstrongylus/fisiologia , Filogenia , Trypanosoma cruzi/isolamento & purificação
9.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205189

RESUMO

The triatomine Rhodnius prolixus is the main vector of Chagas disease in countries such as Colombia and Venezuela, and the first kissing bug whose genome has been sequenced and assembled. In the repetitive genome fraction (repeatome) of this species, the transposable elements represented 19% of R. prolixus genome, being mostly DNA transposon (Class II elements). However, scarce information has been published regarding another important repeated DNA fraction, the satellite DNA (satDNA), or satellitome. Here, we offer, for the first time, extended data about satellite DNA families in the R. prolixus genome using bioinformatics pipeline based on low-coverage sequencing data. The satellitome of R. prolixus represents 8% of the total genome and it is composed by 39 satDNA families, including four satDNA families that are shared with Triatoma infestans, as well as telomeric (TTAGG)n and (GATA)n repeats, also present in the T. infestans genome. Only three of them exceed 1% of the genome. Chromosomal hybridization with these satDNA probes showed dispersed signals over the euchromatin of all chromosomes, both in autosomes and sex chromosomes. Moreover, clustering analysis revealed that most abundant satDNA families configured several superclusters, indicating that R. prolixus satellitome is complex and that the four most abundant satDNA families are composed by different subfamilies. Additionally, transcription of satDNA families was analyzed in different tissues, showing that 33 out of 39 satDNA families are transcribed in four different patterns of expression across samples.


Assuntos
Doença de Chagas/genética , Elementos de DNA Transponíveis/genética , DNA Satélite/genética , Rhodnius/genética , Animais , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Biologia Computacional , Humanos , Anotação de Sequência Molecular , Rhodnius/parasitologia , Rhodnius/patogenicidade , Triatoma/genética , Triatoma/parasitologia , Sequenciamento Completo do Genoma
10.
BMC Genomics ; 21(1): 414, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571205

RESUMO

BACKGROUND: DNA replication in trypanosomatids operates in a uniquely challenging environment, since most of their genomes are constitutively transcribed. Trypanosoma cruzi, the etiological agent of Chagas disease, presents high variability in both chromosomes size and copy number among strains, though the underlying mechanisms are unknown. RESULTS: Here we have mapped sites of DNA replication initiation across the T. cruzi genome using Marker Frequency Analysis, which has previously only been deployed in two related trypanosomatids. The putative origins identified in T. cruzi show a notable enrichment of GC content, a preferential position at subtelomeric regions, coinciding with genes transcribed towards the telomeres, and a pronounced enrichment within coding DNA sequences, most notably in genes from the Dispersed Gene Family 1 (DGF-1). CONCLUSIONS: These findings suggest a scenario where collisions between DNA replication and transcription are frequent, leading to increased genetic variability, as seen by the increase SNP levels at chromosome subtelomeres and in DGF-1 genes containing putative origins.


Assuntos
Polimorfismo de Nucleotídeo Único , Origem de Replicação , Trypanosoma cruzi/genética , Sequenciamento Completo do Genoma/métodos , Animais , Composição de Bases , Replicação do DNA , DNA de Protozoário/genética , Sequenciamento de Nucleotídeos em Larga Escala , Triatoma/parasitologia , Trypanosoma cruzi/isolamento & purificação
11.
Med Vet Entomol ; 34(4): 459-469, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32700806

RESUMO

Domestic animals may affect human-vector contact and parasite transmission rates. We investigated the relationships between host-feeding choices, site-specific host availability, bug nutritional status, stage and abundance of Triatoma infestans Klug (Heteroptera: Reduviidae) in rural houses of Pampa del Indio during spring. We identified the bloodmeal sources of 865 triatomines collected in 70 sites from four main ecotopes. The main sources in domiciles were human (65.9%), chicken (23.4%) and dog (22.4%); dog (64.4%, 35.3%) and chicken (33.1%, 75.4%) in kitchens and storerooms, respectively; and chicken (94.7%) in chicken coops. Using random-intercept logistic regression clustered by domicile, the fraction of human-fed triatomines strongly decreased with increasing proportions of chicken- and dog-fed bugs, dropping from 96.4% when no chicken or dog slept indoors at night to 59.4% when both did. The fraction of dog-fed bugs significantly decreased with increasing human and chicken blood indices, and marginally increased with an indoor-resting dog. Mixed blood meals occurred 3.62 times more often when a chicken or a dog slept indoors. Host blood source did not affect mean body weight adjusted for body length and bug stage. Indoor-resting chickens and dogs greatly modified human-bug contact rates, and may be targeted with long-lasting systemic insecticides to suppress infestation.


Assuntos
Doença de Chagas/transmissão , Galinhas/parasitologia , Cães/parasitologia , Triatoma , Animais , Argentina/epidemiologia , Doença de Chagas/veterinária , Comportamento Alimentar , Humanos , Controle de Insetos , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Características de Residência , População Rural , Estações do Ano , Triatoma/parasitologia , Triatoma/fisiologia , Doenças Transmitidas por Vetores
12.
Bull Entomol Res ; 110(1): 169-176, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31337451

RESUMO

Transmission of Trypanosma cruzi (Kinetoplastida: Trypanosomatidae) occurs when feces/urine of infected triatomines come into contact with mucous membranes or damaged skin, and this occurs mainly when insects defecate while feeding on the host. Thus, the vector competence of the triatomines is associated with their feeding and excretion/defecation behavior. This work studied for the first time the effect of T. cruzi infection on feeding and excretion/defecation patterns of Triatoma infestans (Hemiptera: Reduviidae). Uninfected and infected fifth-instar nymphs were fed ad libitum and their feeding behavior and defecations were registered during and after feeding. The feeding pattern did not show differences between the experimental groups. However, the infected nymphs began to defecate earlier, defecated in greater quantity and there was a greater proportion of defecating individuals compared to uninfected nymphs. These results show that T. cruzi affected the excretion/defecation pattern of T. infestans in a way that would increase the probability of contact between infective feces and the mammalian host.


Assuntos
Interações Hospedeiro-Parasita , Triatoma/parasitologia , Trypanosoma cruzi/fisiologia , Animais , Doença de Chagas/transmissão , Defecação , Comportamento Alimentar , Triatoma/fisiologia
13.
Parasitol Res ; 119(10): 3517-3522, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32617725

RESUMO

The parasite-vector interaction of Chagas disease is still poorly understood and the understanding of this relationship can help in the development of new strategies to control Trypanosoma cruzi transmission, which is the etiological agent of this disease. Considering the need to know if T. cruzi can cause some pathology in the reproductive system of the Chagas disease vectors, we investigated the spermatogenesis of Triatoma infestans infected by T. cruzi through histological and cytogenetic analysis. Trypanosoma cruzi Bolivia strain infection was not pathogenic for the reproductive system of T. infestans, because all the analyzed males had normal spermatogenesis, with all phases (spermatocytogenesis, meiosis and spermiogenesis) happening without any change. Thus, we demonstrated that the presence of T. cruzi Bolivia strain does not have influence in the spermatogenesis of T. infestans and we suggest that the influences on reproductive system observed for other species were a result of the action of the parasite on gametogenesis of females.


Assuntos
Doença de Chagas/transmissão , Insetos Vetores/parasitologia , Espermatogênese/fisiologia , Triatoma/parasitologia , Trypanosoma cruzi/fisiologia , Animais , Doença de Chagas/parasitologia , Interações Hospedeiro-Parasita , Insetos Vetores/fisiologia , Masculino , Triatoma/fisiologia
14.
Mem Inst Oswaldo Cruz ; 114: e190217, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851215

RESUMO

The protozoan Trypanosoma cruzi has the ability to spontaneously secrete extracellular vesicles (EVs). In this paper, T. cruzi EVs derived from epimastigote forms were evaluated during interaction with triatomine bugs Rhodnius prolixus and Triatoma infestans. T. cruzi EVs were purified and artificially offered to the insects prior to infection with epimastigote forms. No effect of EVs was detected in the parasite counts in the guts of both vectors after 49-50 days. On the other hand, pre-feeding with EVs delayed parasite migration to rectum only in the gut in R. prolixus after 21-22 days. Those data suggest a possible role of T. cruzi EVs during the earlier events of infection in the invertebrate host.


Assuntos
Vesículas Extracelulares , Insetos Vetores/parasitologia , Intestinos/parasitologia , Rhodnius/parasitologia , Triatoma/parasitologia , Trypanosoma cruzi/fisiologia , Animais , Interações Hospedeiro-Parasita/fisiologia , Trypanosoma cruzi/citologia
15.
Parasitol Res ; 118(9): 2523-2529, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31385028

RESUMO

Relatively little is known about the fitness effects and life history trade-offs in medically important parasites and their insect vectors. One such case is the triatomine bugs and the parasite Trypanosoma cruzi, the key actors in Chagas disease. Previous studies have revealed some costs but have not simultaneously examined traits related to development, reproduction, and survival or their possible trade-offs. In addition, these studies have not compared the effects of genetically different T. cruzi strains that differ in their weakening effects in their vertebrate hosts. We compared the body size of the bugs after infection, the number of eggs laid, hatching/non-hatching rate, hatching success, survival, and the resulting number of parasites in Meccus (Triatoma) pallidipennis bugs that were experimentally infected with two strains of T. cruzi (Chilpancingo [CH], the most debilitating in vertebrates; and Morelos [MO], the least debilitating) (both belonging to TcI group). Our results showed that infection affects size (MO < CH; MO and CH = control), number of eggs laid (MO and CH < control) hatching/non-hatching rate (MO < control < CH), hatching success (control < MO, CH = control = MO), and survival (Chilpancingo < Morelos < control). In addition, the CH strain produced more parasites than the MO strain. These results suggest that (a) infection costs depend on the parasite's origin, (b) the more debilitating effects of the CH strain are due to its increased proliferation in the host, and (c) differences in pathogenicity among T. cruzi strains can be maintained through their different effects on hosts' life history traits. Probably, the vectorial capacity mediated by a more aggressive strain could be reduced due to its costs on the triatomine, leading to a lower risk of vertebrate and invertebrate infection in natural populations.


Assuntos
Doença de Chagas/parasitologia , Insetos Vetores/parasitologia , Triatoma/crescimento & desenvolvimento , Triatoma/parasitologia , Trypanosoma cruzi/patogenicidade , Animais , Meio Ambiente
16.
BMC Genomics ; 19(1): 296, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29699489

RESUMO

BACKGROUND: Chagas disease is a parasitic infection caused by Trypanosoma cruzi. It is an important public health problem affecting around seven to eight million people in the Americas. A large number of hematophagous triatomine insect species, occupying diverse natural and human-modified ecological niches transmit this disease. Triatomines are long-living hemipterans that have evolved to explode different habitats to associate with their vertebrate hosts. Understanding the molecular basis of the extreme physiological conditions including starvation tolerance and longevity could provide insights for developing novel control strategies. We describe the normalized cDNA, full body transcriptome analysis of three main vectors in North, Central and South America, Triatoma pallidipennis, T. dimidiata and T. infestans. RESULTS: Two-thirds of the de novo assembled transcriptomes map to the Rhodnius prolixus genome and proteome. A Triatoma expansion of the calycin family and two types of protease inhibitors, pacifastins and cystatins were identified. A high number of transcriptionally active class I transposable elements was documented in T. infestans, compared with T. dimidiata and T. pallidipennis. Sequence identity in Triatoma-R. prolixus 1:1 orthologs revealed high sequence divergence in four enzymes participating in gluconeogenesis, glycogen synthesis and the pentose phosphate pathway, indicating high evolutionary rates of these genes. Also, molecular evidence suggesting positive selection was found for several genes of the oxidative phosphorylation I, III and V complexes. CONCLUSIONS: Protease inhibitors and calycin-coding gene expansions provide insights into rapidly evolving processes of protease regulation and haematophagy. Higher evolutionary rates in enzymes that exert metabolic flux control towards anabolism and evidence for positive selection in oxidative phosphorylation complexes might represent genetic adaptations, possibly related to prolonged starvation, oxidative stress tolerance, longevity, and hematophagy and flight reduction. Overall, this work generated novel hypothesis related to biological adaptations to extreme physiological conditions and diverse ecological niches that sustain Chagas disease transmission.


Assuntos
Doença de Chagas/parasitologia , Metabolismo Energético , Genômica , Insetos Vetores/genética , Transcriptoma , Triatoma/genética , Adaptação Fisiológica , Animais , Evolução Biológica , Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Ecologia , Genoma de Inseto , Insetos Vetores/classificação , Insetos Vetores/metabolismo , Insetos Vetores/parasitologia , Família Multigênica , América do Sul , Triatoma/classificação , Triatoma/metabolismo , Triatoma/parasitologia
17.
Mol Phylogenet Evol ; 120: 144-150, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29248626

RESUMO

To date, the phylogeny of Triatoma dimidiata sensu lato (s. l.) (Hemiptera: Reduviidae: Triatominae), the epidemiologically most important Chagas disease vector in Central America and a secondary vector in Mexico and northern South America, has only been investigated by one multi-copy nuclear gene (Internal Transcribed Spacer - 2) and a few mitochondrial genes. We examined 450 specimens sampled across most of its native range from Mexico to Ecuador using reduced representation next-generation sequencing encompassing over 16,000 single nucleotide polymorphisms (SNPs). Using a combined phylogenetic and species delimitation approach we uncovered two distinct species, as well as a well-defined third group that may contain multiple species. The findings are discussed with respect to possible drivers of diversification and the epidemiological importance of the distinct species and groups.


Assuntos
Variação Genética , Genoma , Triatoma/genética , Animais , América Central , Doença de Chagas/parasitologia , Doença de Chagas/patologia , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Genes Mitocondriais , Humanos , Insetos Vetores/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Triatoma/classificação , Triatoma/parasitologia , Trypanosoma cruzi/fisiologia
18.
Mem Inst Oswaldo Cruz ; 113(1): 24-29, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29211105

RESUMO

BACKGROUND: Vector transmission of Trypanosoma cruzi appears to be interrupted in Chile; however, data show increasing incidence of Chagas' disease, raising concerns that there may be a reemerging problem. OBJECTIVE: To estimate the actual risk in a changing world it is necessary to consider the historical vector distribution and correlate this distribution with the presence of cases and climate change. METHODS: Potential distribution models of Triatoma infestans and Chagas disease were performed using Maxent, a machine-learning method. FINDINGS: Climate change appears to play a major role in the reemergence of Chagas' disease and T. infestans in Chile. The distribution of both T. infestans and Chagas' disease correlated with maximum temperature, and the precipitation during the driest month. The overlap of Chagas' disease and T. infestans distribution areas was high. The distribution of T. infestans, under two global change scenarios, showed a minimal reduction tendency in suitable areas. MAIN CONCLUSION: The impact of temperature and precipitation on the distribution of T. infestans, as shown by the models, indicates the need for aggressive control efforts; the current control measures, including T. infestans control campaigns, should be maintained with the same intensity as they have at present, avoiding sylvatic foci, intrusions, and recolonisation of human dwellings.


Assuntos
Mudança Climática , Insetos Vetores/parasitologia , Triatoma/parasitologia , Trypanosoma cruzi/isolamento & purificação , Animais , Doença de Chagas/transmissão , Chile , Humanos , Modelos Biológicos , Fatores de Risco
19.
Int J Mol Sci ; 19(5)2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29695139

RESUMO

Chagas disease or American trypanosomiasis affects six to seven million people worldwide, mostly in Latin America. This disease is transmitted by hematophagous insects known as "kissing bugs" (Hemiptera, Triatominae), with Triatoma infestans and Rhodnius prolixus being the two most important vector species. Despite the fact that both species present the same diploid chromosome number (2n = 22), they have remarkable differences in their total DNA content, chromosome structure and genome organization. Variations in the DNA genome size are expected to be due to differences in the amount of repetitive DNA sequences. The T. infestans genome-wide analysis revealed the existence of 42 satellite DNA families. BLAST searches of these sequences against the R. prolixus genome assembly revealed that only four of these satellite DNA families are shared between both species, suggesting a great differentiation between the Triatoma and Rhodnius genomes. Fluorescence in situ hybridization (FISH) location of these repetitive DNAs in both species showed that they are dispersed on the euchromatic regions of all autosomes and the X chromosome. Regarding the Y chromosome, these common satellite DNAs are absent in T. infestans but they are present in the R. prolixus Y chromosome. These results support a different origin and/or evolution in the Y chromosome of both species.


Assuntos
Insetos Vetores/genética , Sequências Repetitivas de Ácido Nucleico , Rhodnius/genética , Triatoma/genética , Animais , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Bandeamento Cromossômico , DNA Satélite , Evolução Molecular , Genoma de Inseto , Genômica/métodos , Hibridização in Situ Fluorescente , Insetos Vetores/parasitologia , Rhodnius/parasitologia , Triatoma/parasitologia , Trypanosoma cruzi
20.
Parasitology ; 144(14): 1881-1889, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28701240

RESUMO

Species composition of wild reservoir hosts can influence the transmission and maintenance of multi-host vector borne pathogens. The 'pace of life' hypothesis proposes that the life history strategy of reservoir hosts can influence pathogen transmission of vector borne generalist pathogens. We use empirical data to parameterize a mathematical model that investigates the impacts of host life history traits on vector transmission dynamics of the vector-borne multi-host parasite Trypanosoma cruzi in habitats characterized by different degrees of deforestation and varying host community structure. The model considers susceptible and infected vector and host populations. When comparing the proportion of vectors infected with T. cruzi predicted by the model with empirical data, we found a trend of increasing vector infection as anthropogenic landscape disturbance increases for both data and model output. The model's vector infection rates were significantly lower than empirical results, but when incorporating host congenital transmission in the model, vector infection approaches field data. We conclude that intervened habitats associated with r-selected host species communities predict higher proportions of infected vectors.


Assuntos
Doença de Chagas/parasitologia , Interações Hospedeiro-Parasita , Insetos Vetores/parasitologia , Modelos Biológicos , Triatoma/parasitologia , Trypanosoma cruzi/fisiologia , Animais , Doença de Chagas/transmissão , Ecossistema , Características de História de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA