RESUMO
Baloxavir marboxil (1; BXM) is a potent drug used for treating influenza infections. The current synthetic route to BXM (1) is based on optical resolution; however, this method results in the loss of nearly 50% of the material. This study aimed to describe an efficient and simpler method for the synthesis of BXM. We achieved a stereoselective synthesis of BXM (1). The tricyclic triazinanone core possessing a chiral center was prepared via diastereoselective cyclization utilizing the readily available amino acid l-serine. The carboxyl moiety derived from l-serine was removed via photoredox decarboxylation under mild conditions to furnish the chiral tricyclic triazinanone core ((R)-14). The synthetic route demonstrated herein provides an efficient and atomically economical method for preparing this potent anti-influenza agent.
Assuntos
Dibenzotiepinas , Serina , Estereoisomerismo , Ciclização , Serina/química , Estrutura Molecular , Dibenzotiepinas/química , Dibenzotiepinas/síntese química , Triazinas/química , Triazinas/síntese química , Oxirredução , Descarboxilação , Morfolinas/química , Morfolinas/síntese química , Piridonas/química , Piridonas/síntese química , Processos Fotoquímicos , Antivirais/síntese química , Antivirais/químicaRESUMO
We recently described the development and application of a new bioorthogonal conjugation, the triazinium ligation. To explore the wider application of this reaction, in this work, we introduce a general method for synthesizing C3-substituted triazinium salts based on the Liebeskind-Srogl cross-coupling reaction and catalytic thioether reduction. These methods enabled the synthesis of triazinium derivatives for investigating the effect of different substituents on the ligation kinetics and stability of the compounds under biologically relevant conditions. Finally, we demonstrate that the combination of a coumarin fluorophore attached to position C3 with a C5-(4-methoxyphenyl) substituent yields a fluorogenic triazinium probe suitable for no-wash, live-cell labeling. The developed methodology represents a promising synthetic approach to the late-stage modification of triazinium salts, potentially widening their applications in bioorthogonal reactions.
Assuntos
Corantes Fluorescentes , Sais , Triazinas , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Sais/química , Triazinas/química , Triazinas/síntese química , Estrutura Molecular , Humanos , Cumarínicos/química , Cumarínicos/síntese químicaRESUMO
CK1δ is a serine-threonine kinase involved in several pathological conditions including neuroinflammation and neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Specifically, it seems that an inhibition of CK1δ could have a neuroprotective effect in these conditions. Here, a series of [1,2,4]triazolo[1,5-a][1,3,5]triazines were developed as ATP-competitive CK1δ inhibitors. Both positions 2 and 5 have been explored leading to a total of ten compounds exhibiting IC50s comprised between 29.1 µM and 2.08 µM. Three of the four most potent compounds (IC50 < 3 µM) bear a thiophene ring at the 2 position. All compounds have been submitted to computational studies that identified the chain composed of at least 2 atoms (e.g., nitrogen and carbon atoms) at the 5 position as crucial to determine a key bidentate hydrogen bond with Leu85 of CK1δ. Most potent compounds have been tested in vitro, resulting passively permeable to the blood-brain barrier and, safe and slight neuroprotective on a neuronal cell model. These results encourage to further structural optimize the series to obtain more potent CK1δ inhibitors as possible neuroprotective agents to be tested on models of the above-mentioned neurodegenerative diseases.
Assuntos
Caseína Quinase Idelta , Inibidores de Proteínas Quinases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Humanos , Caseína Quinase Idelta/antagonistas & inibidores , Caseína Quinase Idelta/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Triazinas/química , Triazinas/farmacologia , Triazinas/síntese química , Relação Dose-Resposta a Droga , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Simulação de Acoplamento MolecularRESUMO
Multi target directed ligands (MTDLs) are one of the promising tools for treatment of complex disease like Alzheimer's disease (AD). In this study, using rational design, we synthesized new 15 hybrids of the s-triazine, isatin and aniline derivatives as anti- AD compounds. The design was as way as that new compounds could had anti cholinesterase (ChE), antioxidant and biometal chelation ability. In vitro biological evaluation against ChE enzymes showed that these molecules were excellent inhibitors with IC50 values ranging from 0.2 nM to 734.5 nM for acetylcholinesterase (AChE), and 0.02 µM to 1.92 µM for butyrylcholinesterase (BChE). Among these compounds, 8 l with IC50 AChE = 0.7 nM, IC50 BChE = 0.09 µM and 8n with IC50 AChE = 0.2 nM, IC50 BChE = 0.03 µM were the most potent compounds. In silico studies showed that these molecules had key and effective interactions with the corresponding enzymes residues. The molecules with hydroxyl group on aniline moiety had also good antioxidant activity with EC50 values ranging from 64.2 µM to 103.6 µM. The UV-Vis spectroscopy study revealed that molecule 8n was also able to chelate biometals such as Zn2+, Cu2+and Fe2+ properly. It was concluded that these molecules could be excellent lead compounds for future studies.
Assuntos
Acetilcolinesterase , Doença de Alzheimer , Compostos de Anilina , Butirilcolinesterase , Inibidores da Colinesterase , Desenho de Fármacos , Isatina , Triazinas , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Compostos de Anilina/síntese química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Relação Dose-Resposta a Droga , Isatina/química , Isatina/farmacologia , Isatina/síntese química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Triazinas/química , Triazinas/farmacologia , Triazinas/síntese químicaRESUMO
In this study, novel substituted 1,3,5-triazine candidates (4a-d, 5a-j, and 6a-d) were designed as second-generation small molecules to act as dual IDH1 and IDH2 inhibitors according to the pharmacophoric features of both vorasidenib and enasidenib. Compounds 6a and 6b for leukemia cell lines showed from low to sub-micromolar GI50. Moreover, compounds 4c, 5f, and 6b described the frontier antitumor activity against THP1 and Kasumi Leukemia cancer cells with IC50 values of (10 and 12), (10.5 and 7), and (6.2 and 5.9) µg/mL, which were superior to those of cisplatin (25 and 28) µg/mL, respectively. Interestingly, compounds 4c, 6b, and 6d represented the best dual IDH1(R132H)/IDH2(R140Q) inhibitory potentials with IC50 values of (0.72 and 1.22), (0.12 and 0.93), and (0.50 and 1.28) µg/mL, respectively, compared to vorasidenib (0.02 and 0.08) µg/mL and enasidenib (0.33 and 1.80) µg/mL. Furthermore, the most active candidate (6b) has very promising inhibitory potentials towards HIF-1α, VEGF, and SDH, besides, a marked increase of ROS was observed as well. Besides, compound 6b induced the upregulation of P53, BAX, Caspases 3, 6, 8, and 9 proteins by 3.70, 1.99, 2.06, 1.73, 1.75, and 1.85-fold changes, respectively, and the downregulation for the BCL-2 protein by 0.55-fold change compared to the control. Besides, the in vivo behavior of compound 6b as an antitumor agent was evaluated in female mice bearing solid Ehrlich carcinoma tumors. Notably, compound 6b administration resulted in a prominent decrease in the weight and volume of the tumors, accompanied by improvements in biochemical, hematological, and histological parameters.
Assuntos
Antineoplásicos , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Triazinas , Triazinas/química , Triazinas/farmacologia , Triazinas/síntese química , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/metabolismo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Relação Estrutura-Atividade , Animais , Estrutura Molecular , Camundongos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacosRESUMO
OBJECTIVES: Malaria is a significant global health challenge, particularly in Africa, Asia, and Latin America, necessitating immediate investigation into innovative and efficacious treatments. This work involves the development of pyrazole substituted 1,3,5-triazine derivatives as antimalarial agent. METHODS: In this study, ten compounds 7(a-j) were synthesized by using nucleophilic substitution reaction, screened for in silico study and their antimalarial activity were evaluated against 3D7 (chloroquine-sensitive) strain of P. falciparum. KEY FINDING: The present work involves the development of hybrid trimethoxy pyrazole 1,3,5-triazine derivatives 7 (a-j). Through in silico analysis, four compounds were identified with favorable binding energy and dock scores. The primary focus of the docking investigations was on the examination of hydrogen bonding and the associated interactions with certain amino acid residues, including Arg A122, Ser A108, Ser A111, Ile A164, Asp A54, and Cys A15. The IC50 values of the four compounds were measured in vitro to assess their antimalarial activity against the chloroquine sensitive 3D7 strain of P. falciparum. The IC50 values varied from 25.02 to 54.82 µg/mL. CONCLUSION: Among the ten derivatives, compound 7J has considerable potential as an antimalarial agent, making it a viable contender for further refinement in the realm of pharmaceutical exploration, with the aim of mitigating the global malaria load.
Assuntos
Antimaláricos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Plasmodium falciparum , Pirazóis , Triazinas , Antimaláricos/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Triazinas/farmacologia , Triazinas/química , Triazinas/síntese química , Plasmodium falciparum/efeitos dos fármacos , Simulação por Computador , Desenho de Fármacos , Relação Estrutura-Atividade , Humanos , Cloroquina/farmacologia , Cloroquina/química , Ligação de HidrogênioRESUMO
In the last decade, an increasing interest in compounds containing pyrazolo[4,3-e][1,2,4]triazine moiety is observed. Therefore, the aim of the research was to synthesise a novel sulphonyl pyrazolo[4,3-e][1,2,4]triazines (2a, 2b) and pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulphonamide derivatives (3a, 3b) to assess their anticancer activity. The MTT assay showed that 2a, 2b, 3a, 3b have stronger cytotoxic activity than cisplatin in both breast cancer cells (MCF-7 and MDA-MB-231) and exhibited weaker effect on normal breast cells (MCF-10A). The obtained results showed that the most active compound 3b increased apoptosis via caspase 9, caspase 8, and caspase 3/7. It is worth to note that compound 3b suppressed NF-κB expression and promoted p53, Bax, and ROS which play important role in activation of apoptosis. Moreover, our results confirmed that compound 3b triggers autophagy through increased formation of autophagosomes, expression of beclin-1 and mTOR inhibition. Thus, our study defines a possible mechanism underlying 3b-induced anti-cancer activity against breast cancer cell lines.
Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Sulfonamidas , Triazinas , Humanos , Triazinas/farmacologia , Triazinas/química , Triazinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Tumorais Cultivadas , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Feminino , Linhagem Celular Tumoral , Esferoides Celulares/efeitos dos fármacosRESUMO
On the basis of remarkable anticancer profile of s-triazine nucleus, a new series of 2-methoxy-4-(3-morpholino-5-(arylamino)phenoxy)benzaldehyde derivatives 11 a-u was prepared and evaluated for in vitro antiproliferative activity against eight diverse human cancer cell lines (Capan-1, HCT-116, LN229, NCI-H460, DND-41, HL-60, K562 and Z138). Compounds 11 o, 11 r and 11 s were the most potent anticancer agents on pancreatic adenocarcinoma (Capan-1) cell line with IC50 value of 1.4, 5.1 and 5.3⠵M, respectively, while compounds 11 f, 11 g, 11 k, 11 l and 11 n displayed selective activity against the pancreatic adenocarcinoma (Capan-1) cell line with IC50 values of 7.3-11.5⠵M. These results indicate that derivative 11 o may serve as a promising lead compound for the ongoing development of novel antiproliferative agents. The docking studies were conducted to predict the interactions of derivative 11 o with putative protein targets in pancreatic adenocarcinoma (Capan-1) cell line, specifically the prenyl-binding protein PDEδ. Furthermore, the analysis of the molecular dynamics simulation results demonstrated that complex 11 o promoted a higher stability to the prenyl-binding protein PDEδ.
Assuntos
Adenocarcinoma , Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias Pancreáticas , Triazinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Triazinas/química , Triazinas/farmacologia , Triazinas/síntese química , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Estrutura Molecular , Relação Dose-Resposta a DrogaRESUMO
In diabetes mellitus, amylase and glucosidase enzymes are the primary triggers. The main function of these enzymes is to break macromolecules into simple sugar units, which directly affect blood sugar levels by increasing blood permeability. To overcome this metabolic effect, there is a need for a potent and effective inhibitor capable of suppressing the enzymatic conversion of sugar macromolecules into their smaller units. Herein, we reported the discovery of a series of substituted triazolo[4,3-b][1,2,4]triazine derivatives as α-glucosidase and α-amylase inhibitors. All target compounds demonstrated significant inhibitory activities against α-glucosidase and α-amylase enzymes compared with acarbose as the positive control. The most potent compound 10k, 2-[(6-phenyl-[1,2,4]triazolo[4,3-b][1,2,4]triazin-3-yl)thio]-N-[4-(trifluoromethyl)phenyl]acetamide, demonstrated IC50 values of 31.87 and 24.64 nM against α-glucosidase and α-amylase enzymes, respectively. To study their mechanism of action, kinetic studies were also done, which determined the mode of inhibition of both enzymes. Molecular docking was used to confirm the binding interactions of the most active compounds.
Assuntos
Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , Triazinas , alfa-Amilases , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Relação Estrutura-Atividade , alfa-Glucosidases/metabolismo , Triazinas/farmacologia , Triazinas/síntese química , Triazinas/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Humanos , Triazóis/farmacologia , Triazóis/química , Triazóis/síntese químicaRESUMO
The crucial functions of acetylcholinesterase (AChE) in neurotransmission and glutathione S-transferase (GST) in detoxification and cellular protection underscore their pivotal roles as key enzymes, essential for maintaining the integrity of neurological and cellular homeostasis. For this purpose, a series of 1,2,4-triazine-sulfonamide hybrids (3a-r) was successfully synthesized, and subsequently evaluated for their inhibitory effects on AChE and GST. The investigation was complemented by molecular docking studies and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) predictions. The synthesized hybrids demonstrated significant promise in inhibiting both AChE and GST activities. Molecular docking analyses provided insights into the interactions between the compounds and the target enzymes, shedding light on potential binding modes and key amino acid residues involved. Furthermore, the study benefited from ADMET predictions, offering valuable information on the compounds' pharmacokinetic properties and potential toxicity. The promising results obtained from this comprehensive approach highlight the potential of these 1,2,4-triazine-sulfonamide hybrids as effective inhibitors of AChE and GST, paving the way for further development and optimization in the pursuit of novel therapeutic agents.
Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Glutationa Transferase , Simulação de Acoplamento Molecular , Sulfonamidas , Triazinas , Triazinas/farmacologia , Triazinas/química , Triazinas/síntese química , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Humanos , AnimaisRESUMO
Hepatocellular carcinoma is the most common type of primary liver cancer. However, multidrug resistance (MDR) is a major obstacle to the effective chemotherapy of cancer cells. This report documents the rational design, synthesis, and biological evaluation of a novel series of triazolotriazines substituted with CH2NH-linked pyridine for use as dual c-Met/MDR inhibitors. Compound 12g with IC50 of 3.06 µM on HepG2 cells showed more potency than crizotinib (IC50 = 5.15 µM) in the MTT assay. In addition, 12g inhibited c-Met kinase at a low micromolar level (IC50 = 0.052 µM). 12g significantly inhibited P-gp and MRP1/2 efflux pumps in both cancerous HepG2 and BxPC3 cells starting from the lower concentrations of 3 and 0.3 µM, respectively. 12g did not inhibit MDR1 and MRP1/2 in noncancerous H69 cholangiocytes up to the concentration of 30 and 60 µM, respectively. Current results highlighted that cancerous cells were more susceptible to the effect of 12g than normal cells, in which the inhibition occurred only at the highest concentrations, suggesting a further interest in 12g as a selective anticancer agent. Overall, 12g, as a dual c-Met and P-gp/MRP inhibitor, is a promising lead compound for developing a new generation of anticancer agents.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Relação Estrutura-Atividade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Estrutura Molecular , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Triazinas/farmacologia , Triazinas/química , Triazinas/síntese químicaRESUMO
Peptides displaying antimicrobial properties are being regarded as useful tools to evade and combat antimicrobial resistance, a major public health challenge. Here we have addressed dendrimers, attractive molecules in pharmaceutical innovation and development displaying broad biological activity. Triazine-based dendrimers were fully synthesized in the solid phase, and their antimicrobial activity and some insights into their mechanisms of action were explored. Triazine is present in a large number of compounds with highly diverse biological targets with broad biological activities and could be an excellent branching unit to accommodate peptides. Our results show that the novel peptide dendrimers synthesized have remarkable antimicrobial activity against Gram-negative bacteria (E. coli and P. aeruginosa) and suggest that they may be useful in neutralizing the effect of efflux machinery on resistance.
Assuntos
Dendrímeros , Escherichia coli , Testes de Sensibilidade Microbiana , Triazinas , Dendrímeros/química , Dendrímeros/síntese química , Dendrímeros/farmacologia , Triazinas/química , Triazinas/farmacologia , Triazinas/síntese química , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/síntese químicaRESUMO
In previous work, we discovered a lead compound and conducted initial SAR studies on a novel series of dioxotriazines to identify the compound as one of the P2X3 receptor antagonists. This compound showed high P2X3 receptor selectivity and a strong analgesic effect. Although not selected for clinical development, the compound was evaluated from various aspects as a tool compound. In the course of the following study, the molecular structures of the dioxotriazines were modified based on pharmacokinetic/pharmacodynamic (PK/PD) analyses. As a result of these SAR studies, Sivopixant (S-600918) was identified as a clinical candidate with potent and selective antagonistic activity (P2X3 IC50, 4.2 nM; P2X2/3 IC50, 1100 nM) and a strong analgesic effect in the rat partial sciatic nerve ligation model (Seltzer model) of allodynia (ED50, 0.4 mg/kg).
Assuntos
Compostos de Anilina/farmacologia , Descoberta de Drogas , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Receptores Purinérgicos P2X3/metabolismo , Triazinas/farmacologia , Compostos de Anilina/síntese química , Compostos de Anilina/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Antagonistas do Receptor Purinérgico P2X/síntese química , Antagonistas do Receptor Purinérgico P2X/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/químicaRESUMO
Cdc25B phosphatase catalyzes the dephosphorylation and activation of cyclin-dependent kinases 2 (CDK2/CycA) and their overexpression has been reported in cancers. Although Cdc25B has received much attention as a drug target, its flat and featureless surface makes it challenging to develop new agents targeting this protein. In this study, we investigated the rational design of a series of bivalent triazine-based derivatives with the aim of simultaneously targeting the active site and the remote hotspot critical for the interaction with CDK2/CycA. Compounds 1e and 10, containing aromatic residues, were shown to inhibit Cdc25B activity selectively over Cdc25A at low micromolar concentration.
Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Triazinas/farmacologia , Fosfatases cdc25/antagonistas & inibidores , Domínio Catalítico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/química , Fosfatases cdc25/metabolismoRESUMO
Recently we have developed novel oxotriazinoindole inhibitors (OTIs) of aldose reductase (ALR2), characterized by high efficacy and selectivity. Herein we describe novel OTI derivatives design of which is based on implementation of additional intermolecular interactions within an unoccupied pocket of the ALR2 enzyme. Four novel derivatives, OTI-(7-10), of the previously developed N-benzyl(oxotriazinoindole) inhibitor OTI-6 were synthetized and screened. All of them revealed 2 to 6 times higher ALR2 inhibitory efficacy when compared to their non-substituted lead compound OTI-6. Moreover, the most efficient ALR2 inhibitor OTI-7 (IC50 = 76 nM) possesses remarkably high inhibition selectivity (SF ≥ 1300) in relation to structurally related aldehyde reductase (ALR1). Derivatives OTI-(8-10) bearing the substituents -CONH2, -COOH and -CH2OH, possess 2-3 times lower inhibitory efficacy compared to OTI-7, but better than the reference inhibitor OTI-6. Desolvation penalty is suggested as a possible factor responsible for the drop in ALR2 inhibitory efficacy observed for derivatives OTI-(8-10) in comparison to OTI-7.
Assuntos
Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Triazinas/farmacologia , Aldeído Redutase/metabolismo , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Indóis/síntese química , Indóis/química , Cristalino/enzimologia , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/químicaRESUMO
This study describes the synthesis of novel 1,3,5-triazine derivatives as potent inhibitors of cervical cancer. The compounds were initially tested for inhibition of PI3K/mTOR, where they showed significant inhibitory activity. The top-ranking molecule (compound 6 h) was further tested against class I PI3K isoforms, such as PI3Kα, PI3Kß, PI3Kγ and PI3Kδ, where it showed the most significant activity against PI3Kα. Compound 6 h was then tested for anti-cancer activity against triple-negative breast cancer cells (MDA-MB321), human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human liver cancer cells (HepG2), and it showed the greatest potency against HeLa cells. The effects of compound 6 h were further evaluated against the HeLa cells, where it showed significant attenuation of cell viability by inducing cell cycle arrest in the G1 phase. Compound 6 h induced apoptosis and reduced migration and invasion of HeLa cells. Western blotting analysis showed that 6 h inhibited PI3K and mTOR with positive modulation of Bcl-2 and Bax levels in HeLa cells. The effects of compound 6 h were also investigated in a tumour xenograft mouse model, where it showed reduction of tumour volume and weight. It also inhibited the PI3K/Akt/mTOR signalling cascade in xenograft tumour tissues, as evidenced by western blotting analysis. The results of the present study suggest the possible utility of the designed 1,3,5-triazine derivative as a potent inhibitor of cervical cancer.
Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Triazinas/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo , Triazinas/síntese química , Triazinas/química , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologiaRESUMO
The present manuscript deals with the development of novel p-aminobenzoic acid (PABA) associated 1,3,5-triazine derivatives as antimalarial agents. The molecules were developed via microwave-assisted synthesis and structures of compounds were ascertained via numerous analytical and spectroscopic techniques. The synthesized compounds were also subjected to ADMET analysis. In a docking analysis, the title compounds showed high and diverse binding affinities towards wild (-162.45 to -369.38 kcal/mol) and quadruple mutant (-165.36 to -209.47 kcal/mol) Pf-DHFR-TS via interacting with Phe58, Arg59, Ser111, Ile112, Phe116. The in vitro antimalarial activity suggested that compounds 4e, 4b, and 4h showed IC50 ranging from 4.18 to 8.66 µg/ml against the chloroquine-sensitive (3D7) strain of Plasmodium falciparum. Moreover, compounds 4g, 4b, 4e, and 4c showed IC50 ranging from 8.12 to 12.09 µg/ml against chloroquine-resistant (Dd2) strain. In conclusion, our study demonstrated the development of hybrid PABA substituted 1,3,5-triazines as a novel class of Pf-DHFR inhibitor for antimalarial drug discovery.
Assuntos
Antimaláricos , Micro-Ondas , Plasmodium falciparum/crescimento & desenvolvimento , Triazinas , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/farmacologia , Humanos , Triazinas/síntese química , Triazinas/química , Triazinas/farmacologiaRESUMO
Malaria continues to become a major global health problem, particularly in Sub-Saharan Africa, Asia, and Latin America. The widespread emergence of resistance to first-line drugs has further bolstered an urgent need for a new and cost-effective antimalarial(s). Thus, the present study enumerates the synthesis of novel hybrid dimethoxy pyrazole 1,3,5-triazine derivatives 7(a-j) and their in silico results short-listed three compounds with good binding energies and dock scores. Docking analysis shows that hydrogen-bonding predominates and typically involves key residues, such as Asp54, Tyr170, Ile164, and Arg122. The in vitro antimalarial evaluation of three top-ranked compounds (7e, 7g, and 7h) showed half-maximal inhibitory concentration values range from 53.85 to 100 µg/ml against chloroquine-sensitive strain 3D7 of Plasmodium falciparum. Compound 7e may be utilized as a lead for further optimization work in drug discovery due to good antimalarial activity.
Assuntos
Antimaláricos , Malária Falciparum/tratamento farmacológico , Simulação de Acoplamento Molecular , Plasmodium falciparum/química , Pirazóis , Triazinas , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/uso terapêutico , Humanos , Plasmodium falciparum/metabolismo , Pirazóis/síntese química , Pirazóis/química , Pirazóis/uso terapêutico , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/química , Triazinas/uso terapêuticoRESUMO
Parkinson's disease (PD) is a chronic neuro-degenerative ailment characterized by impairment in various motor and nonmotor functions of the body. In the past few years, adenosine A2 A receptor (A2 AR) antagonists have attracted much attention due to significant relief in PD. Therefore, in the current study, we intend to disclose the development of novel 1,3,5-triazines as A2 AR antagonist. The radioligand binding and selectivity of analogs were tested in HEK293 (human embryonic kidney) and the cells were transfected with pcDNA 3.1(+) containing full-length human A2 AR cDNA and pcDNA 3.1(+) containing full-length human A1 R cDNA, where they exhibit selective affinity for A2 AR. Molecular docking analysis was also conducted to rationalize the probable mode of action, binding affinity, and orientation of the most potent molecule (7c) at the active site of A2 AR. It has been shown that compound 7c form numerous nonbonded interactions in the active site of A2 AR by interacting with Ala59, Ala63, Ile80, Val84 Glu169, Phe168, Met270, and Ile274. The study revealed 1,3,5-triazines as a novel class of A2 AR antagonists.
Assuntos
Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/síntese química , Simulação de Acoplamento Molecular , Doença de Parkinson/tratamento farmacológico , Receptor A2A de Adenosina/química , Triazinas/química , Triazinas/síntese química , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Células HEK293 , Humanos , Doença de Parkinson/metabolismo , Receptor A2A de Adenosina/metabolismo , Triazinas/uso terapêuticoRESUMO
Thirty-five new colchicine binding site inhibitors have been designed and synthesized based on the 1,2,4-triazin-3(2H)-one nucleus. Such molecules were synthesized through a cascade reaction between readily accessible α-amino ketones and phenyl carbazate as a masked N-isocyanate precursor. The synthesized derivatives are cisoid restricted combretastatin A4 analogues containing 1,2,4-triazin-3(2H)-one in place of the olefinic bond, and they have the same essential pharmacophoric features of colchicine binding site inhibitors. The synthesized compounds were evaluated in vitro for their antiproliferative activities against a panel of three human cancer cell lines (MCF-7, HepG-2, and HCT-116), using colchicine as a positive control. Among them, two compounds 5i and 6i demonstrated a significant antiproliferative effect against all cell lines with IC50 ranging from 8.2 - 18.2 µM. Further investigation was carried out for the most active cytotoxic agents as tubulin polymerization inhibitors. Compounds 5i and 6i effectively inhibited microtubule assembly with IC50 values ranging from 3.9 to 7.8 µM. Tubulin polymerization assay results were found to be comparable with the cytotoxicity results. The cell cycle analysis revealed significant G2/M cell cycle arrest of the analogue 5i in HepG-2 cells. The most active compounds 4i, 4j, 5 g, 5i and 6i did not induce significant cell death in normal human lung cells Wl-38, suggesting their selectivity against cancer cells. Also, These compounds upregulated the level of active caspase-3 and boosted the levels of the pro-apoptotic protein Bax by five to seven folds in comparison to the control. Moreover, apoptosis analyses were conducted for compound 5i to evaluate its apoptotic potential. Finally, in silico studies were conducted to reveal the probable interaction with the colchicine binding site. ADME prediction study of the designed compounds showed that they are not only with promising tubulin polymerization inhibitory activity but also with favorable pharmacokinetic and drug-likeness properties.