Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 869
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 30: 207-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25288113

RESUMO

Development in multicellular organisms requires the coordinated production of a large number of specialized cell types through sophisticated signaling mechanisms. Non-cell-autonomous signals are one of the key mechanisms by which organisms coordinate development. In plants, intercellular movement of transcription factors and other mobile signals, such as hormones and peptides, is essential for normal development. Through a combination of different approaches, a large number of non-cell-autonomous signals that control plant development have been identified. We review some of the transcriptional regulators that traffic between cells, as well as how changes in symplasmic continuity affect and are affected by development. We also review current models for how mobile signals move via plasmodesmata and how movement is inhibited. Finally, we consider challenges in and new tools for studying protein movement.


Assuntos
Comunicação Celular/fisiologia , Desenvolvimento Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Plasmodesmos/fisiologia , Transporte Proteico/fisiologia , Parede Celular/ultraestrutura , Cloroplastos/fisiologia , Florígeno , Glucanos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Plasmodesmos/ultraestrutura , RNA de Plantas/fisiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Tricomas/metabolismo
2.
Plant Cell ; 36(6): 2375-2392, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38470570

RESUMO

Homeodomain (HD) proteins regulate embryogenesis in animals such as the fruit fly (Drosophila melanogaster), often in a concentration-dependent manner. HD-leucine zipper (Zip) IV family genes are unique to plants and often function in the L1 epidermal cell layer. However, our understanding of the roles of HD-Zip IV family genes in plant morphogenesis is limited. In this study, we investigated the morphogenesis of tomato (Solanum lycopersicum) multicellular trichomes, a type of micro-organ in plants. We found that a gradient of the HD-Zip IV regulator Woolly (Wo) coordinates spatially polarized cell division and cell expansion in multicellular trichomes. Moreover, we identified a TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCP) transcription factor-encoding gene, SlBRANCHED2a (SlBRC2a), as a key downstream target of Wo that regulates the transition from cell division to cell expansion. High levels of Wo promote cell division in apical trichome cells, whereas in basal trichome cells, Wo mediates a negative feedback loop with SlBRC2a that forces basal cells to enter endoreduplication. The restricted high and low activities of Wo pattern the morphogenesis of tomato multicellular trichomes. These findings provide insights into the functions of HD-Zip IV genes during plant morphogenesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Morfogênese , Proteínas de Plantas , Solanum lycopersicum , Tricomas , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Solanum lycopersicum/citologia , Tricomas/crescimento & desenvolvimento , Tricomas/genética , Tricomas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Morfogênese/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Divisão Celular
3.
Plant Cell ; 36(4): 1007-1035, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38124479

RESUMO

Exocyst component of 70-kDa (EXO70) proteins are constituents of the exocyst complex implicated in vesicle tethering during exocytosis. MILDEW RESISTANCE LOCUS O (MLO) proteins are plant-specific calcium channels and some MLO isoforms enable fungal powdery mildew pathogenesis. We here detected an unexpected phenotypic overlap of Arabidopsis thaliana exo70H4 and mlo2 mlo6 mlo12 triple mutant plants regarding the biogenesis of leaf trichome secondary cell walls. Biochemical and Fourier transform infrared spectroscopic analyses corroborated deficiencies in the composition of trichome cell walls in these mutants. Transgenic lines expressing fluorophore-tagged EXO70H4 and MLO exhibited extensive colocalization of these proteins. Furthermore, mCherry-EXO70H4 mislocalized in trichomes of the mlo triple mutant and, vice versa, MLO6-GFP mislocalized in trichomes of the exo70H4 mutant. Expression of GFP-marked PMR4 callose synthase, a known cargo of EXO70H4-dependent exocytosis, revealed reduced cell wall delivery of GFP-PMR4 in trichomes of mlo triple mutant plants. In vivo protein-protein interaction assays in plant and yeast cells uncovered isoform-preferential interactions between EXO70.2 subfamily members and MLO proteins. Finally, exo70H4 and mlo6 mutants, when combined, showed synergistically enhanced resistance to powdery mildew attack. Taken together, our data point to an isoform-specific interplay of EXO70 and MLO proteins in the modulation of trichome cell wall biogenesis and powdery mildew susceptibility.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tricomas/genética , Tricomas/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(21): e2321565121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739796

RESUMO

With a continuous increase in world population and food production, chemical pesticide use is growing accordingly, yet unsustainably. As chemical pesticides are harmful to the environment and developmental resistance in pests is increasing, a sustainable and effective pesticide alternative is needed. Inspired by nature, we mimic one defense strategy of plants, glandular trichomes, to shift away from using chemical pesticides by moving toward a physical immobilization strategy via adhesive particles. Through controlled oxidation of a biobased starting material, triglyceride oils, an adhesive material is created while monitoring the reactive intermediates. After being milled into particles, nanoindentation shows these particles to be adhesive even at low contact forces. A suspension of particles is then sprayed and found to be effective at immobilizing a target pest, thrips, Frankliniella occidentalis. Small arthropod pests, like thrips, can cause crop damage through virus transfer, which is prevented by their immobilization. We show that through a scalable fabrication process, biosourced materials can be used to create an effective, sustainable physical pesticide.


Assuntos
Adesivos , Adesivos/química , Animais , Tisanópteros/fisiologia , Praguicidas/química , Praguicidas/farmacologia , Tricomas/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(42): e2309616120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37824528

RESUMO

Biological patterns that emerge during the morphogenesis of multicellular organisms can display high precision at large scales, while at cellular scales, cells exhibit large fluctuations stemming from cell-cell differences in molecular copy numbers also called demographic noise. We study the conflicting interplay between high precision and demographic noise in trichome patterns on the epidermis of wild-type Arabidopsis thaliana leaves, as a two-dimensional model system. We carry out a statistical characterization of these patterns and show that their power spectra display fat tails-a signature compatible with noise-driven stochastic Turing patterns-which are absent in power spectra of patterns driven by deterministic instabilities. We then present a theoretical model that includes demographic noise stemming from birth-death processes of genetic regulators which we study analytically and by stochastic simulations. The model captures the observed experimental features of trichome patterns.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Tricomas/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo
6.
Plant J ; 120(2): 729-747, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39259840

RESUMO

Trichomes, which originate from the epidermal cell of aerial organs, provide plants with defense and secretion functions. Although numerous genes have been implicated in trichome development, the molecular mechanisms underlying trichome cell formation in plants remain incompletely understood. Here, we using genome-wide association study (GWAS) across 1037 diverse accessions in upland cotton (Gossypium hirsutum) to identify three loci associated with leaf pubescence (hair) amount, located on chromosome A06 (LPA1), A08 (LPA2) and A11 (LPA3), respectively. GhHD1, a previously characterized candidate gene, was identified on LPA1 and encodes an HD-Zip transcription factor. For LPA2 and LPA3, we identified two candidate genes, GhGIR1 and GhGIR2, both encoding proteins with WD40 and RING domains that act as inhibitors of leaf hair formation. Expression analysis revealed that GhHD1 was predominantly expressed in hairy accessions, whereas GhGIR1 and GhGIR2 were expressed in hairless accessions. Silencing GhHD1 or overexpressing GhGIR1 in hairy accessions induced in a hairless phenotype, whereas silencing GhGIR2 in hairless accessions resulted in a hairy phenotype. We also demonstrated that GhHD1 interact with both GhGIR1 and GhGIR2, and GhGIR1 can interact with GhGIR2. Further investigation indicated that GhHD1 functions as a transcriptional activator, binding to the promoters of the GhGIR1 and GhGIR2 to active their expression, whereas GhGIR1 and GhGIR2 can suppress the transcriptional activation of GhHD1. Our findings shed light on the intricate regulatory network involving GhHD1, GhGIR1 and GhGIR2 in the initiation and development of plant epidermal hairs in cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Gossypium , Folhas de Planta , Proteínas de Plantas , Tricomas , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Tricomas/genética , Tricomas/crescimento & desenvolvimento , Tricomas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Plant J ; 119(4): 1703-1719, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38967095

RESUMO

Previously, expression of the Arabidopsis thaliana GLABRA3 (GL3) induced trichome formation in Brassica napus. GL3 orthologues were examined from glabrous (B. oleracea), semi-glabrous (B. napus), moderately hirsute (B. rapa), and very hirsute (B. villosa) Brassica species. Ectopic expression of BnGL3, BrGL3 alleles, or BvGL3 induced trichome formation in glabrous B. napus with the effect on trichome number commensurate with density in the original accessions. Chimeric GL3 proteins in which the B. napus amino terminal region, which interacts with MYB proteins, or the middle region, which interacts with the WD40 protein TTG1, was exchanged with corresponding regions from A. thaliana were as stimulatory to trichome production as AtGL3. Exchange of the carboxy-terminal region containing a bHLH domain and an ACT domain did not alter the trichome stimulatory activity, although modeling of the ACT domain identified differences that could affect GL3 dimerization. B. napus A- and C-genomes orthologues differed in their abilities to form homo- and heterodimers. Modeling of the amino-terminal region revealed a conserved domain that may represent the MYB factor binding pocket. This region interacted with the MYB factors GL1, CPC, and TRY, as well as with JAZ8, which is involved in jasmonic acid-mediated regulation of MYC-like transcription factors. Protein interaction studies indicated that GL1 interaction with GL3 from B. napus and A. thaliana may underlie the difference in their respective abilities to induce trichome formation.


Assuntos
Proteínas de Arabidopsis , Brassica napus , Proteínas de Plantas , Tricomas , Brassica napus/genética , Brassica napus/metabolismo , Tricomas/metabolismo , Tricomas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Fatores de Transcrição Hélice-Alça-Hélice Básicos
8.
Plant J ; 118(4): 1155-1173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332528

RESUMO

Cannabis glandular trichomes (GTs) are economically and biotechnologically important structures that have a remarkable morphology and capacity to produce, store, and secrete diverse classes of secondary metabolites. However, our understanding of the developmental changes and the underlying molecular processes involved in cannabis GT development is limited. In this study, we developed Cannabis Glandular Trichome Detection Model (CGTDM), a deep learning-based model capable of differentiating and quantifying three types of cannabis GTs with a high degree of efficiency and accuracy. By profiling at eight different time points, we captured dynamic changes in gene expression, phenotypes, and metabolic processes associated with GT development. By integrating weighted gene co-expression network analysis with CGTDM measurements, we established correlations between phenotypic variations in GT traits and the global transcriptome profiles across the developmental gradient. Notably, we identified a module containing methyl jasmonate (MeJA)-responsive genes that significantly correlated with stalked GT density and cannabinoid content during development, suggesting the existence of a MeJA-mediated GT formation pathway. Our findings were further supported by the successful promotion of GT development in cannabis through exogenous MeJA treatment. Importantly, we have identified CsMYC4 as a key transcription factor that positively regulates GT formation via MeJA signaling in cannabis. These findings provide novel tools for GT detection and counting, as well as valuable information for understanding the molecular regulatory mechanism of GT formation, which has the potential to facilitate the molecular breeding, targeted engineering, informed harvest timing, and manipulation of cannabinoid production.


Assuntos
Acetatos , Cannabis , Ciclopentanos , Aprendizado Profundo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oxilipinas , Tricomas , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Cannabis/genética , Cannabis/crescimento & desenvolvimento , Cannabis/metabolismo , Acetatos/farmacologia , Tricomas/genética , Tricomas/metabolismo , Tricomas/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Transcriptoma , Reguladores de Crescimento de Plantas/metabolismo
9.
Plant J ; 117(4): 1084-1098, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37934816

RESUMO

Plant cell wall polysaccharides, including xylan, mannan, xyloglucan, and pectins, are often acetylated and members of the domain of unknown function 231 (DUF231)/trichome birefringence-like (TBL) family have been shown to be O-acetyltransferases mediating the acetylation of xylan, mannan, and xyloglucan. However, little is known about the O-acetyltransferases responsible for pectin acetylation. In this report, we biochemically characterized a suite of Arabidopsis DUF231/TBL proteins for their roles in pectin acetylation. We generated 24 TBL recombinant proteins in mammalian cells and demonstrated that 10 of them were able to transfer acetyl groups from acetyl-CoA onto the pectins homogalacturonan (HG) or rhamnogalacturonan-I (RG-I), and thus were named pectin O-acetyltransferase 1 to 10 (POAT1 to 10). It was found that POAT2,4,9,10 specifically acetylated HG and POAT5,6 acetylated RG-I, whereas POAT1,3,7,8 could act on both HG and RG-I. The acetylation of HG and RG-I by POATs was further corroborated by hydrolysis with pectin acetylesterases and by nuclear magnetic resonance spectroscopy. In addition, mutations of the conserved GDS and DXXH motifs in POAT3 and POAT8 were shown to lead to a loss of their ability to acetylate HG and RG-I. Furthermore, simultaneous RNA interference downregulation of POAT1,3,6,7,8 resulted in reduced cell expansion, impaired plant growth, and decreased pectin acetylation. Together, our findings indicate that these POATs are pectin O-acetyltransferases involved in acetylation of the pectin polysaccharides HG and RG-I.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Xilanos/metabolismo , Ramnogalacturonanos/análise , Ramnogalacturonanos/metabolismo , Mananas/metabolismo , Acetilação , Birrefringência , Tricomas/metabolismo , Pectinas/metabolismo , Polissacarídeos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Catálise , Parede Celular/metabolismo
10.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35502761

RESUMO

The juvenile-to-adult transition in plants is known as vegetative phase change and is marked by changes in the expression of leaf traits in response to a decrease in the level of miR156 and miR157. To determine whether this is the only mechanism of vegetative phase change, we measured the appearance of phase-specific leaf traits in 70 natural accessions of Arabidopsis thaliana. We found that leaf shape was poorly correlated with abaxial trichome production (two adult traits), that variation in these traits was not necessarily correlated with the level of miR156, and that there was little to no correlation between the appearance of adult-specific vegetative traits and flowering time. We identified eight quantitative trait loci controlling phase-specific vegetative traits from a cross between the Columbia (Col-0) and Shakdara (Sha) accessions. Only one of these quantitative trait loci includes genes known to regulate vegetative phase change (MIR156A and TOE1), which were expressed at levels consistent with the precocious phenotype of Sha. Our results suggest that vegetative phase change is regulated both by the miR156/SPL module and by genes specific to different vegetative traits, and that natural variation in vegetative phase change can arise from either source.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Tricomas/metabolismo
11.
Plant Physiol ; 195(2): 1256-1276, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38391271

RESUMO

The Arabidopsis (Arabidopsis thaliana) TRANSPARENT TESTA GLABRA2 (TTG2) gene encodes a WRKY transcription factor that regulates a range of development events like trichome, seed coat, and atrichoblast formation. Loss-of-function of TTG2 was previously shown to reduce or eliminate trichome specification and branching. Here, we report the identification of an allele of TTG2, ttg2-6. In contrast to the ttg2 mutants described before, ttg2-6 displayed unique trichome phenotypes. Some ttg2-6 mutant trichomes were hyper-branched, whereas others were hypo-branched, distorted, or clustered. Further, we found that in addition to specifically activating R3 MYB transcription factor TRIPTYCHON (TRY) to modulate trichome specification, TTG2 also integrated cytoskeletal signaling to regulate trichome morphogenesis. The ttg2-6 trichomes displayed aberrant cortical microtubules (cMTs) and actin filaments (F-actin) configurations. Moreover, genetic and biochemical analyses showed that TTG2 could directly bind to the promoter and regulate the expression of BRICK1 (BRK1), which encodes a subunit of the actin nucleation promoting complex suppressor of cyclic AMP repressor (SCAR)/Wiskott-Aldrich syndrome protein family verprolin homologous protein (WAVE). Collectively, taking advantage of ttg2-6, we uncovered a function for TTG2 in facilitating cMTs and F-actin cytoskeleton-dependent trichome development, providing insight into cellular signaling events downstream of the core transcriptional regulation during trichome development in Arabidopsis.


Assuntos
Citoesqueleto de Actina , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição , Tricomas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Tricomas/genética , Tricomas/crescimento & desenvolvimento , Tricomas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mutação/genética , Fenótipo , Microtúbulos/metabolismo , Forma Celular/genética , Regiões Promotoras Genéticas/genética
12.
Plant Physiol ; 196(2): 1231-1253, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748602

RESUMO

Solanaceae (nightshade family) species synthesize a remarkable array of clade- and tissue-specific specialized metabolites. Protective acylsugars, one such class of structurally diverse metabolites, are produced by ACYLSUGAR ACYLTRANSFERASE (ASAT) enzymes from sugars and acyl-coenzyme A esters. Published research has revealed trichome acylsugars composed of glucose and sucrose cores in species across the family. In addition, acylsugars have been analyzed across a small fraction of the >1,200 species in the phenotypically megadiverse Solanum genus, with a handful containing inositol and glycosylated inositol cores. The current study sampled several dozen species across subclades of Solanum to get a more detailed view of acylsugar chemodiversity. In depth characterization of acylsugars from the clade II species brinjal eggplant (Solanum melongena) led to the identification of eight unusual structures with inositol or inositol glycoside cores and hydroxyacyl chains. Liquid chromatography-mass spectrometry analysis of 31 additional species in the Solanum genus revealed striking acylsugar diversity, with some traits restricted to specific clades and species. Acylinositols and inositol-based acyldisaccharides were detected throughout much of the genus. In contrast, acylglucoses and acylsucroses were more restricted in distribution. Analysis of tissue-specific transcriptomes and interspecific acylsugar acetylation differences led to the identification of the brinjal eggplant ASAT 3-LIKE 1 (SmASAT3-L1; SMEL4.1_12g015780) enzyme. This enzyme is distinct from previously characterized acylsugar acetyltransferases, which are in the ASAT4 clade, and appears to be a functionally divergent ASAT3. This study provides a foundation for investigating the evolution and function of diverse Solanum acylsugar structures and harnessing this diversity in breeding and synthetic biology.


Assuntos
Solanum , Tricomas , Solanum/genética , Solanum/metabolismo , Tricomas/metabolismo , Tricomas/genética , Inositol/metabolismo , Aciltransferases/metabolismo , Aciltransferases/genética , Filogenia , Açúcares/metabolismo
13.
Plant Physiol ; 195(2): 911-923, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38466177

RESUMO

Type-IV glandular trichomes, which only occur in the juvenile developmental phase of the cultivated tomato (Solanum lycopersicum), produce acylsugars that broadly protect against arthropod herbivory. Previously, we introgressed the capacity to retain type-IV trichomes in the adult phase from the wild tomato, Solanum galapagense, into the cultivated species cv. Micro-Tom (MT). The resulting MT-Galapagos enhanced trichome (MT-Get) introgression line contained 5 loci associated with enhancing the density of type-IV trichomes in adult plants. We genetically dissected MT-Get and obtained a subline containing only the locus on Chromosome 2 (MT-Get02). This genotype displayed about half the density of type-IV trichomes compared to the wild progenitor. However, when we stacked the gain-of-function allele of WOOLLY, which encodes a homeodomain leucine zipper IV transcription factor, Get02/Wo exhibited double the number of type-IV trichomes compared to S. galapagense. This discovery corroborates previous reports positioning WOOLLY as a master regulator of trichome development. Acylsugar levels in Get02/Wo were comparable to the wild progenitor, although the composition of acylsugar types differed, especially regarding fewer types with medium-length acyl chains. Agronomical parameters of Get02/Wo, including yield, were comparable to MT. Pest resistance assays showed enhanced protection against silverleaf whitefly (Bemisia tabaci), tobacco hornworm (Manduca sexta), and the fungus Septoria lycopersici. However, resistance levels did not reach those of the wild progenitor, suggesting the specificity of acylsugar types in the pest resistance mechanism. Our findings in trichome-mediated resistance advance the development of robust, naturally resistant tomato varieties, harnessing the potential of natural genetic variation. Moreover, by manipulating only 2 loci, we achieved exceptional results for a highly complex, polygenic trait, such as herbivory resistance in tomato.


Assuntos
Solanum lycopersicum , Tricomas , Tricomas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Animais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação/genética , Herbivoria , Herança Multifatorial , Manduca/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
14.
Plant Physiol ; 195(1): 552-565, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38243383

RESUMO

Plant trichome development is influenced by diverse developmental and environmental signals, but the molecular mechanisms involved are not well understood in most plant species. Fruit spines (trichomes) are an important trait in cucumber (Cucumis sativus L.), as they affect both fruit smoothness and commercial quality. Spine Base Size1 (CsSBS1) has been identified as essential for regulating fruit spine size in cucumber. Here, we discovered that CsSBS1 controls a season-dependent phenotype of spine base size in wild-type plants. Decreased light intensity led to reduced expression of CsSBS1 and smaller spine base size in wild-type plants, but not in the mutants with CsSBS1 deletion. Additionally, knockout of CsSBS1 resulted in smaller fruit spine base size and eliminated the light-induced expansion of spines. Overexpression of CsSBS1 increased spine base size and rescued the decrease in spine base size under low light conditions. Further analysis revealed that ELONGATED HYPOTCOTYL5 (HY5), a major transcription factor involved in light signaling pathways, directly binds to the promoter of CsSBS1 and activates its expression. Knockout of CsHY5 led to smaller fruit spine base size and abolished the light-induced expansion of spines. Taken together, our study findings have clarified a CsHY5-CsSBS1 regulatory module that mediates light-regulated spine expansion in cucumber. This finding offers a strategy for cucumber breeders to develop fruit with stable appearance quality under changing light conditions.


Assuntos
Cucumis sativus , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Plantas , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Tricomas/genética , Tricomas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fenótipo , Regiões Promotoras Genéticas/genética
15.
Plant J ; 116(2): 389-403, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37403589

RESUMO

Trichomes, the outward projection of plant epidermal tissue, provide an effective defense against stress and insect pests. Although numerous genes have been identified to be involved in trichome development, the molecular mechanism for trichome cell fate determination is not well enunciated. Here, we reported GoSTR functions as a master repressor for stem trichome formation, which was isolated by map-based cloning based on a large F2 segregating population derived from a cross between TM-1 (pubescent stem) and J220 (smooth stem). Sequence alignment revealed a critical G-to-T point mutation in GoSTR's coding region that converted codon 2 from GCA (Alanine) to TCA (Serine). This mutation occurred between the majority of Gossypium hirsutum with pubescent stem (GG-haplotype) and G. barbadense with glabrous stem (TT-haplotype). Silencing of GoSTR in J220 and Hai7124 via virus-induced gene silencing resulted in the pubescent stems but no visible change in leaf trichomes, suggesting stem trichomes and leaf trichomes are genetically distinct. Yeast two-hybrid assay and luciferase complementation imaging assay showed GoSTR interacts with GoHD1 and GoHOX3, two key regulators of trichome development. Comparative transcriptomic analysis further indicated that many transcription factors such as GhMYB109, GhTTG1, and GhMYC1/GhDEL65 which function as positive regulators of trichomes were significantly upregulated in the stem from the GoSTR-silencing plant. Taken together, these results indicate that GoSTR functions as an essential negative modulator of stem trichomes and its transcripts will greatly repress trichome cell differentiation and growth. This study provided valuable insights for plant epidermal hair initiation and differentiation research.


Assuntos
Gossypium , Tricomas , Gossypium/genética , Tricomas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Epiderme Vegetal/metabolismo , Regulação da Expressão Gênica de Plantas/genética
16.
Plant J ; 115(6): 1716-1728, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37337787

RESUMO

Several commercially important secondary metabolites are produced and accumulated in high amounts by glandular trichomes, giving the prospect of using them as metabolic cell factories. Due to extremely high metabolic fluxes through glandular trichomes, previous research focused on how such flows are achieved. The question regarding their bioenergetics became even more interesting with the discovery of photosynthetic activity in some glandular trichomes. Despite recent advances, how primary metabolism contributes to the high metabolic fluxes in glandular trichomes is still not fully elucidated. Using computational methods and available multi-omics data, we first developed a quantitative framework to investigate the possible role of photosynthetic energy supply in terpenoid production and next tested experimentally the simulation-driven hypothesis. With this work, we provide the first reconstruction of specialised metabolism in Type-VI photosynthetic glandular trichomes of Solanum lycopersicum. Our model predicted that increasing light intensities results in a shift of carbon partitioning from catabolic to anabolic reactions driven by the energy availability of the cell. Moreover, we show the benefit of shifting between isoprenoid pathways under different light regimes, leading to a production of different classes of terpenes. Our computational predictions were confirmed in vivo, demonstrating a significant increase in production of monoterpenoids while the sesquiterpenes remained unchanged under higher light intensities. The outcomes of this research provide quantitative measures to assess the beneficial role of chloroplast in glandular trichomes for enhanced production of secondary metabolites and can guide the design of new experiments that aim at modulating terpenoid production.


Assuntos
Sesquiterpenos , Tricomas , Tricomas/metabolismo , Carbono/metabolismo , Terpenos/metabolismo , Sesquiterpenos/metabolismo , Monoterpenos/metabolismo
17.
Plant J ; 116(3): 756-772, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37516999

RESUMO

Cell differentiation and morphogenesis are crucial for the establishment of diverse cell types and organs in multicellular organisms. Trichome cells offer an excellent paradigm for dissecting the regulatory mechanisms of plant cell differentiation and morphogenesis due to their unique growth characteristics. Here, we report the isolation of an Arabidopsis mutant, aberrantly branched trichome 3-1 (abt3-1), with a reduced trichome branching phenotype. Positional cloning and molecular complementation experiments confirmed that abt3-1 is a new mutant allele of Auxin resistant 1 (AXR1), which encodes the N-terminal half of ubiquitin-activating enzyme E1 and functions in auxin signaling pathway. Meanwhile, we found that transgenic plants expressing constitutively active version of ROP2 (CA-ROP2) caused a reduction of trichome branches, resembling that of abt3-1. ROP2 is a member of Rho GTPase of plants (ROP) family, serving as versatile signaling switches involved in a range of cellular and developmental processes. Our genetic and biochemical analyses showed AXR1 genetically interacted with ROP2 and mediated ROP2 protein stability. The loss of AXR1 aggravated the trichome defects of CA-ROP2 and induced the accumulation of steady-state ROP2. Consistently, elevated AXR1 expression levels suppressed ROP2 expression and partially rescued trichome branching defects in CA-ROP2 plants. Together, our results presented a new mutant allele of AXR1, uncovered the effects of AXR1 and ROP2 during trichome development, and revealed a pathway of ROP2-mediated regulation of plant cell morphogenesis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Tricomas/genética , Tricomas/metabolismo , Ácidos Indolacéticos , Alelos , Diferenciação Celular , Morfogênese/genética , Plantas Geneticamente Modificadas/genética , Mutação , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo
18.
BMC Plant Biol ; 24(1): 541, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872084

RESUMO

BACKGROUND: The glandular trichomes of tobacco (Nicotiana tabacum) can efficiently produce secondary metabolites. They act as natural bioreactors, and their natural products function to protect plants against insect-pests and pathogens and are also components of industrial chemicals. To clarify the molecular mechanisms of tobacco glandular trichome development and secondary metabolic regulation, glandular trichomes and glandless trichomes, as well as other different developmental tissues, were used for RNA sequencing and analysis. RESULTS: By comparing glandless and glandular trichomes with other tissues, we obtained differentially expressed genes. They were obviously enriched in KEGG pathways, such as cutin, suberine, and wax biosynthesis, flavonoid and isoflavonoid biosynthesis, terpenoid biosynthesis, and plant-pathogen interaction. In particular, the expression levels of genes related to the terpenoid, flavonoid, and wax biosynthesis pathway mainly showed down-regulation in glandless trichomes, implying that they lack the capability to synthesize certain exudate compounds. Among the differentially expressed genes, 234 transcription factors were found, including AP2-ERFs, MYBs, bHLHs, WRKYs, Homeoboxes (HD-ZIP), and C2H2-ZFs. These transcription factor and genes that highly expressed in trichomes or specially expressed in GT or GLT. Following the overexpression of R2R3-MYB transcription factor Nitab4.5_0011760g0030.1 in tobacco, an increase in the number of branched glandular trichomes was observed. CONCLUSIONS: Our data provide comprehensive gene expression information at the transcriptional level and an understanding of the regulatory pathways involved in glandular trichome development and secondary metabolism.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Nicotiana , Tricomas , Tricomas/genética , Tricomas/metabolismo , Tricomas/crescimento & desenvolvimento , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crescimento & desenvolvimento , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
BMC Plant Biol ; 24(1): 62, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262916

RESUMO

Nectar guide trichomes play crucial ecological roles in bee-pollinated flowers, as they serve as footholds and guides for foraging bees to access the floral rewards. However, the genetic basis of natural variation in nectar guide trichomes among species remains poorly understood. In this study, we performed genetic analysis of nectar guide trichome variation between two closely related monkeyflower (Mimulus) species, the bumblebee-pollinated Mimulus lewisii and self-pollinated M. parishii. We demonstrate that a MIXTA-like R2R3-MYB gene, GUIDELESS, is a major contributor to the nectar guide trichome length variation between the two species. The short-haired M. parishii carries a recessive allele due to non-synonymous substitutions in a highly conserved motif among MIXTA-like MYB proteins. Furthermore, our results suggest that besides GUIDELESS, additional loci encoding repressors of trichome elongation also contribute to the transition from bumblebee-pollination to selfing. Taken together, these results suggest that during a pollination syndrome switch, changes in seemingly complex traits such as nectar guide trichomes could have a relatively simple genetic basis, involving just a few genes of large effects.


Assuntos
Mimulus , Néctar de Plantas , Abelhas , Animais , Tricomas , Polinização , Flores
20.
BMC Plant Biol ; 24(1): 609, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926877

RESUMO

BACKGROUND: Grapevine (Vitis) is one of the world's most valuable fruit crops, but insect herbivory can decrease yields. Understanding insect herbivory resistance is critical to mitigating these losses. Vitis labrusca, a wild North American grapevine species, has been leveraged in breeding programs to generate hybrid grapevines with enhanced abiotic and biotic stress resistance, rendering it a valuable genetic resource for sustainable viticulture. This study assessed the resistance of V. labrusca acc. 'GREM4' and Vitis vinifera cv. 'PN40024' grapevines to Popillia japonica (Japanese beetle) herbivory and identified morphological and genetic adaptations underlying this putative resistance. RESULTS: 'GREM4' displayed greater resistance to beetle herbivory compared to 'PN40024' in both choice and no-choice herbivory assays spanning periods of 30 min to 19 h. 'GREM4' had significantly higher average leaf trichome densities than 'PN40024' and beetles preferred to feed on the side of leaves with fewer trichomes. When leaves from each species that specifically did not differ in trichome densities were fed on by beetles, significantly less leaf area was damaged in 'GREM4' (3.29mm2) compared to 'PN40024' (9.80mm2), suggesting additional factors beyond trichomes contributed to insect herbivory resistance in 'GREM4'. Comparative transcriptomic analyses revealed 'GREM4' exhibited greater constitutive (0 h) expression of defense response and secondary metabolite biosynthesis genes compared to 'PN40024', indicative of heightened constitutive defenses. Upon herbivory, 'GREM4' displayed a greater number of differentially expressed genes (690) compared to 'PN40024' (502), suggesting a broader response. Genes up-regulated in 'GREM4' were enriched in terpene biosynthesis, flavonoid biosynthesis, phytohormone signaling, and disease defense-related functions, likely contributing to heighted insect herbivory defense, while genes differentially expressed in 'PN40024' under herbivory were enriched in xyloglucan, cell wall formation, and calcium ion binding. The majority of genes implicated in insect herbivory defense were orthologs with specific expression patterns in 'GREM4' and 'PN40024', but some paralogous and genome-specific genes also likely contributed to conferring resistance. CONCLUSIONS: Our findings suggest that 'GREM4' insect herbivory resistance was attributed to a combination of factors, including trichomes and unique constitutive and inducible expression of genes implicated in terpene, flavonoid, and phenylpropanoid biosynthesis, as well as pathogen defense.


Assuntos
Besouros , Herbivoria , Tricomas , Vitis , Animais , Vitis/genética , Vitis/fisiologia , Vitis/parasitologia , Tricomas/fisiologia , Tricomas/genética , Besouros/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Regulação da Expressão Gênica de Plantas , Defesa das Plantas contra Herbivoria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA