Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 19(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064193

RESUMO

Oncolytic vaccina virus (oncoVV) used for cancer therapy has progressed in recent years. Here, a gene encoding white-spotted charr lectin (WCL) was inserted into an oncoVV vector to form an oncoVV-WCL recombinant virus. OncoVV-WCL induced higher levels of apoptosis and cytotoxicity, and replicated faster than control virus in cancer cells. OncoVV-WCL promoted IRF-3 transcriptional activity to induce higher levels of type I interferons (IFNs) and blocked the IFN-induced antiviral response by inhibiting the activity of IFN-stimulated responsive element (ISRE) and the expression of interferon-stimulated genes (ISGs). The higher levels of viral replication and antitumor activity of oncoVV-WCL were further demonstrated in a mouse xenograft tumor model. Therefore, the engineered oncoVV expressing WCL might provide a new avenue for anticancer gene therapy.


Assuntos
Antineoplásicos/farmacologia , Lectinas/genética , Lectinas/farmacologia , Vírus Oncolíticos/genética , Truta/genética , Vaccinia virus/genética , Animais , Antineoplásicos/uso terapêutico , Antivirais/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Feminino , Humanos , Fator Regulador 3 de Interferon/genética , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia Viral Oncolítica , Vírus Oncolíticos/crescimento & desenvolvimento , Neoplasias do Colo do Útero/tratamento farmacológico , Vaccinia virus/crescimento & desenvolvimento , Replicação Viral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092575

RESUMO

Oncolytic virotherapy represents a promising experimental anticancer strategy, based on the use of genetically modified viruses to selectively infect and kill cancer cells. Vesicular stomatitis virus (VSV) is a prototypic oncolytic virus (OV) that induces cancer cell death through activation of the apoptotic pathway, although intrinsic resistance to oncolysis is found in some cell lines and many primary tumors, as a consequence of residual innate immunity to the virus. In the effort to improve OV therapeutic efficacy, we previously demonstrated that different agents, including histone deacetylase inhibitors (HDIs), functioned as reversible chemical switches to dampen the innate antiviral response and improve the susceptibility of resistant cancer cells to VSV infection. In the present study, we demonstrated that the NAD+-dependent histone deacetylase SIRT1 (silent mating type information regulation 2 homolog 1) plays a key role in the permissivity of prostate cancer PC-3 cells to VSVΔM51 replication and oncolysis. HDI-mediated enhancement of VSVΔM51 infection and cancer cell killing directly correlated with a decrease of SIRT1 expression. Furthermore, pharmacological inhibition as well as silencing of SIRT1 by small interfering RNA (siRNA) was sufficient to sensitize PC-3 cells to VSVΔM51 infection, resulting in augmentation of virus replication and spread. Mechanistically, HDIs such as suberoylanilide hydroxamic acid (SAHA; Vorinostat) and resminostat upregulated the microRNA miR-34a that regulated the level of SIRT1. Taken together, our findings identify SIRT1 as a viral restriction factor that limits VSVΔM51 infection and oncolysis in prostate cancer cells.IMPORTANCE The use of nonpathogenic viruses to target and kill cancer cells is a promising strategy in cancer therapy. However, many types of human cancer are resistant to the oncolytic (cancer-killing) effects of virotherapy. In this study, we identify a host cellular protein, SIRT1, that contributes to the sensitivity of prostate cancer cells to infection by a prototypical oncolytic virus. Knockout of SIRT1 activity increases the sensitivity of prostate cancer cells to virus-mediated killing. At the molecular level, SIRT1 is controlled by a small microRNA termed miR-34a. Altogether, SIRT1 and/or miR-34a levels may serve as predictors of response to oncolytic-virus therapy.


Assuntos
Interações entre Hospedeiro e Microrganismos , Imunidade Inata , Vírus Oncolíticos/crescimento & desenvolvimento , Sirtuína 1/metabolismo , Vesiculovirus/crescimento & desenvolvimento , Replicação Viral , Humanos , Masculino , Vírus Oncolíticos/imunologia , Células PC-3 , Vesiculovirus/imunologia
3.
J Virol ; 93(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31315994

RESUMO

As many tumor cells synthetize vascular endothelial growth factors (VEGF) that promote neo-vascularization and metastasis, frontline cancer therapies often administer anti-VEGF (α-VEGF) antibodies. To target the oncolytic parvovirus minute virus of mice (MVM) to the tumor vasculature, we studied the functional tolerance, evasion of neutralization, and induction of α-VEGF antibodies of chimeric viruses in which the footprint of a neutralizing monoclonal antibody within the 3-fold capsid spike was replaced by VEGF-blocking peptides: P6L (PQPRPL) and A7R (ATWLPPR). Both peptides allowed viral genome replication and nuclear translocation of chimeric capsid subunits. MVM-P6L efficiently propagated in culture, exposing the heterologous peptide on the capsid surface, and evaded neutralization by the anti-spike monoclonal antibody. In contrast, MVM-A7R yielded low infectious titers and was poorly recognized by an α-A7R monoclonal antibody. MVM-A7R showed a deficient assembly pattern, suggesting that A7R impaired a transitional configuration that the subunits must undergo in the 3-fold axis to close up the capsid shell. The MVM-A7R chimeric virus consistently evolved in culture into a mutant carrying the P6Q amino acid substitution within the A7R sequence, which restored normal capsid assembly and infectivity. Consistent with this finding, anti-native VEGF antibodies were induced in mice by a single injection of MVM-A7R empty capsids, but not by MVM-A7R virions. This fundamental study provides insights to endow an infectious parvovirus with immune antineovascularization and evasion capacities by replacing an antibody footprint in the capsid 3-fold axis with VEGF-blocking peptides, and it also illustrates the evolutionary capacity of single-stranded DNA (ssDNA) viruses to overcome engineered capsid structural restrictions.IMPORTANCE Targeting the VEGF signaling required for neovascularization by vaccination with chimeric capsids of oncolytic viruses may boost therapy for solid tumors. VEGF-blocking peptides (VEbp) engineered in the capsid 3-fold axis endowed the infectious parvovirus MVM with the ability to induce α-VEGF antibodies without adjuvant and to evade neutralization by MVM-specific antibodies. However, these properties may be compromised by structural restraints that the capsid imposes on the peptide configuration and by misassembly caused by the heterologous peptides. Significantly, chimeric MVM-VEbp resolved the structural restrictions by selecting mutations within the engineered peptides that restored efficient capsid assembly. These data show the promise of antineovascularization vaccines using chimeric VEbp-icosahedral capsids of oncolytic viruses but also raise safety concerns regarding the genetic stability of manipulated infectious parvoviruses in cancer and gene therapies.


Assuntos
Vacinas Anticâncer/imunologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Vírus Miúdo do Camundongo/imunologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Proteínas do Capsídeo/genética , Camundongos Endogâmicos BALB C , Vírus Miúdo do Camundongo/genética , Vírus Miúdo do Camundongo/crescimento & desenvolvimento , Vírus Oncolíticos/genética , Vírus Oncolíticos/crescimento & desenvolvimento , Vírus Oncolíticos/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Carga Viral , Montagem de Vírus , Ligação Viral , Internalização do Vírus
4.
J Cell Physiol ; 234(6): 8636-8646, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30515798

RESUMO

Cancer therapy using oncolytic viruses is an emerging area, in which viruses are engineered to selectively propagate in tumor tissues without affecting healthy cells. Because of the advantages that adenoviruses (Ads) have over other viruses, they are more considered. To achieve tumor selectivity, two main modifications on Ads genome have been applied: small deletions and insertion of tissue- or tumor-specific promoters. Despite oncolytic adenoviruses ability in tumor cell lysis and immune responses stimulation, to further increase their antitumor effects, genomic modifications have been carried out including insertion of checkpoint inhibitors and antigenic or immunostimulatory molecules into the adenovirus genome and combination with dendritic cells and chemotherapeutic agents. This study reviews oncolytic adenoviruses structures, their antitumor efficacy in combination with other therapeutic strategies, and finally challenges around this treatment approach.


Assuntos
Adenoviridae/patogenicidade , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/patogenicidade , Adenoviridae/genética , Adenoviridae/crescimento & desenvolvimento , Adenoviridae/imunologia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Quimioterapia Adjuvante , Células Dendríticas/imunologia , Células Dendríticas/transplante , Terapia Genética , Humanos , Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/virologia , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/genética , Vírus Oncolíticos/crescimento & desenvolvimento , Vírus Oncolíticos/imunologia , Replicação Viral
5.
Int J Mol Sci ; 20(3)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30709038

RESUMO

Oncolytic adenoviruses can trigger lysis of tumor cells, induce an antitumor immune response, bypass classical chemotherapeutic resistance strategies of tumors, and provide opportunities for combination strategies. A major challenge is the development of scalable production methods for viral seed stocks and sufficient quantities of clinical grade viruses. Because of promising clinical signals in a compassionate use program (Advanced Therapy Access Program) which supported further development, we chose the oncolytic adenovirus ONCOS-401 as a testbed for a new approach to scale up. We found that the best viral production conditions in both T-175 flasks and HYPERFlasks included A549 cells grown to 220,000 cells/cm² (80% confluency), with ONCOS-401 infection at 30 multiplicity of infection (MOI), and an incubation period of 66 h. The Lysis A harvesting method with benzonase provided the highest viral yield from both T-175 and HYPERFlasks (10,887 ± 100 and 14,559 ± 802 infectious viral particles/cell, respectively). T-175 flasks and HYPERFlasks produced up to 2.1 × 108 ± 0.2 and 1.75 × 108 ± 0.08 infectious particles of ONCOS-401 per cm² of surface area, respectively. Our findings suggest a suitable stepwise process that can be applied to optimizing the initial production of other oncolytic viruses.


Assuntos
Adenoviridae/crescimento & desenvolvimento , Vírus Oncolíticos/crescimento & desenvolvimento , Cultura de Vírus/instrumentação , Células A549 , Animais , Técnicas de Cultura Celular por Lotes/instrumentação , Humanos , Carga Viral , Cultura de Vírus/métodos , Replicação Viral
6.
J Infect Dis ; 217(5): 721-730, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29228368

RESUMO

Cells latently infected with human immunodeficiency virus (HIV) evade immune- and drug-mediated clearance. These cells harbor intracellular signaling defects, including impairment of the antiviral type I interferon response. Such defects have also been observed in several cancers and have been exploited for the development of therapeutic oncolytic viruses, including the recombinant Maraba virus (MG1). We therefore hypothesized that MG1 would infect and eliminate cells latently infected with HIV-1, while sparing healthy uninfected cells. Preferential infection and elimination by MG1 was first demonstrated in cell lines latently infected with HIV-1. Following this, a reduction in HIV-1 DNA and inducible HIV-1 replication was observed following MG1 infection of latently infected, resting CD4+ T cells generated using an in vitro model of latency. Last, MG1 infection resulted in a reduction in HIV-1 DNA and inducible HIV-1 replication in memory CD4+ T cells isolated from effectively treated, HIV-1-infected individuals. Our results therefore highlight a novel approach to eliminate the latent HIV-1 reservoir.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , Vírus Oncolíticos/crescimento & desenvolvimento , Vesiculovirus/crescimento & desenvolvimento , Latência Viral , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Infecções por HIV/terapia , Humanos
7.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250120

RESUMO

The oncolytic herpes simplex virus (HSV) that has been approved for clinical practice and those HSVs in clinical trials are attenuated viruses, often with the neurovirulence gene γ134.5 and additional genes deleted. One strategy to engineer nonattenuated oncolytic HSVs consists of retargeting the viral tropism to a cancer-specific receptor of choice, exemplified by HER2 (human epidermal growth factor receptor 2), which is present in breast, ovary, and other cancers, and in detargeting from the natural receptors. Because the HER2-retargeted HSVs strictly depend on this receptor for infection, the viruses employed in preclinical studies were cultivated in HER2-positive cancer cells. The production of clinical-grade viruses destined for humans should avoid the use of cancer cells. Here, we engineered the R-213 recombinant, by insertion of a 20-amino-acid (aa) short peptide (named GCN4) in the gH of R-LM113; this recombinant was retargeted to HER2 through insertion in gD of a single-chain antibody (scFv) to HER2. Next, we generated a Vero cell line expressing an artificial receptor (GCN4R) whose N terminus consists of an scFv to GCN4 and therefore is capable of interacting with GCN4 present in gH of R-213. R-213 replicated as well as R-LM113 in SK-OV-3 cells, implying that addition of the GCN4 peptide was not detrimental to gH. R-213 grew to relatively high titers in Vero-GCN4R cells, efficiently spread from cell to cell, and killed both Vero-GCN4R and SK-OV-3 cells, as expected for an oncolytic virus. Altogether, Vero-GCN4R cells represent an efficient system for cultivation of retargeted oncolytic HSVs in non-cancer cells.IMPORTANCE There is growing interest in viruses as oncolytic agents, which can be administered in combination with immunotherapeutic compounds, including immune checkpoint inhibitors. The oncolytic HSV approved for clinical practice and those in clinical trials are attenuated viruses. An alternative to attenuation is a cancer specificity achieved by tropism retargeting to selected cancer receptors. However, the retargeted oncolytic HSVs strictly depend on cancer receptors for infection. Here, we devised a strategy for in vitro cultivation of retargeted HSVs in non-cancer cells. The strategy envisions a double-retargeting approach: one retargeting is via gD to the cancer receptor, and the second retargeting is via gH to an artificial receptor expressed in Vero cells. The double-retargeted HSV uses alternatively the two receptors to infect cancer cells or producer cells. A universal non-cancer cell line for growth of clinical-grade retargeted HSVs represents a step forward in the translational phase.


Assuntos
Vírus Oncolíticos/crescimento & desenvolvimento , Vírus Oncolíticos/genética , Receptor ErbB-2/genética , Simplexvirus/crescimento & desenvolvimento , Cultura de Vírus/métodos , Animais , Linhagem Celular , Chlorocebus aethiops , Engenharia Genética/métodos , Herpesvirus Humano 1/química , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Humanos , Terapia Viral Oncolítica , Vírus Oncolíticos/metabolismo , Receptor ErbB-2/química , Simplexvirus/genética , Simplexvirus/metabolismo , Células Vero , Tropismo Viral
8.
J Med Virol ; 90(10): 1669-1673, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29797583

RESUMO

Oncolytic adenoviral immunotherapy activates the innate immune system with subsequent induction of adaptive tumor-specific immune responses to fight cancer. Hence, oncolytic viruses do not only eradicate cancer cells by direct lysis, but also generate antitumor immune response, allowing for long-lasting cancer control and tumor reduction. Their therapeutic effect can be further enhanced by arming the oncolytic adenovirus with costimulatory transgenes and/or coadministration with other antitumor therapies. ONCOS-102 has already been found to be well tolerated and efficacious against some types of treatment-refractory tumors, including mesothelin-positive ovarian cancer (NCT01598129). It induced local and systemic CD8+ T-cell immunity and upregulated programmed death ligand 1. These results strongly advocate the use of ONCOS-102 in combination with other therapeutic strategies in advanced and refractory tumors, especially those expressing the mesothelin antigen. The in vivo work presented herein describes the ability of the oncolytic adenovirus ONCOS-102 to induce mesothelin-specific T-cells after the administration of the virus in bagg albino (BALB/c) mice with mesothelin-positive tumors. We also demonstrate the effectiveness of the interferon-γ the enzyme-linked immunospot (ELISPOT) assay to detect the induction of T-cells recognizing mesothelin, hexon, and E1A antigens in ONCOS-102-treated mesothelioma-bearing BALB/c mice. Thus, the ELISPOT assay could be useful to monitor the progress of therapy with ONCOS-102.


Assuntos
Adenoviridae/crescimento & desenvolvimento , Anticorpos Antineoplásicos/sangue , Mesotelioma/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , ELISPOT , Humanos , Mesotelina , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Resultado do Tratamento
9.
Biotechnol Bioeng ; 115(5): 1186-1194, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29288575

RESUMO

Oncolytic viruses offer new hope to millions of patients with incurable cancer. One promising class of oncolytic viruses is Measles virus, but its broad administration to cancer patients is currently hampered by the inability to produce the large amounts of virus needed for treatment (1010 -1012 virus particles per dose). Measles virus is unstable, leading to very low virus titers during production. The time of infection and time of harvest are therefore critical parameters in a Measles virus production process, and their optimization requires an accurate online monitoring system. We integrated a probe based on dielectric spectroscopy (DS) into a stirred tank reactor to characterize the Measles virus production process in adherent growing Vero cells. We found that DS could be used to monitor cell adhesion on the microcarrier and that the optimal virus harvest time correlated with the global maximum permittivity signal. In 16 independent bioreactor runs, the maximum Measles virus titer was achieved approximately 40 hr after the permittivity maximum. Compared to an uncontrolled Measles virus production process, the integration of DS increased the maximum virus concentration by more than three orders of magnitude. This was sufficient to achieve an active Measles virus concentration of > 1010 TCID50 ml-1 .


Assuntos
Espectroscopia Dielétrica/métodos , Vírus do Sarampo/crescimento & desenvolvimento , Vírus Oncolíticos/crescimento & desenvolvimento , Tecnologia Farmacêutica/métodos , Cultura de Vírus/métodos , Animais , Chlorocebus aethiops , Células Vero
10.
J Cell Biochem ; 118(8): 1994-1999, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28135008

RESUMO

Interferons (INFs) elicit antiviral responses in tumor cells upon binding to cell surface receptors. Oncolytic virotherapy (OV) is an effective antitumor therapeutic approach which in combination with standard radiotherapy or chemotherapy regimens potentiates treatment responses in cancer patients. However, oncolytic viruses are susceptible to the IFN-induced antiviral state in the tumor microenvironment. A number of studies have, therefore, investigated the effects of combined therapy of IFN signaling pharmacological inhibitors with oncolytic viruses, which result in improved virus replication and oncolysis. This review summarizes the current knowledge of the mechanisms of interferon-mediated tumor resistance to oncolytic virotherapy and provides new insights regarding the effectiveness of combinatorial treatment strategies to attenuate INF-induced OV resistance for greater clinical significance in the treatment of cancer patients. J. Cell. Biochem. 118: 1994-1999, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Regulação Neoplásica da Expressão Gênica/imunologia , Células-Tronco Hematopoéticas/imunologia , Interferons/imunologia , Neoplasias/imunologia , Terapia Viral Oncolítica , Nicho de Células-Tronco/imunologia , Medula Óssea/imunologia , Medula Óssea/patologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Dinoprostona/imunologia , Dinoprostona/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/imunologia , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/imunologia , Regulação Neoplásica da Expressão Gênica/genética , Células-Tronco Hematopoéticas/patologia , Humanos , Integrinas/genética , Integrinas/imunologia , Interferons/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Vírus Oncolíticos/crescimento & desenvolvimento , Vírus Oncolíticos/imunologia , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Transdução de Sinais , Nicho de Células-Tronco/genética
11.
J Virol ; 90(11): 5343-5352, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27009956

RESUMO

UNLABELLED: Clinical development of a mesogenic strain of Newcastle disease virus (NDV) as an oncolytic agent for cancer therapy has been hampered by its select agent status due to its pathogenicity in avian species. Using reverse genetics, we have generated a lead candidate oncolytic NDV based on the mesogenic NDV-73T strain that is no longer classified as a select agent for clinical development. This recombinant NDV has a modification at the fusion protein (F) cleavage site to reduce the efficiency of F protein cleavage and an insertion of a 198-nucleotide sequence into the HN-L intergenic region, resulting in reduced viral gene expression and replication in avian cells but not in mammalian cells. In mammalian cells, except for viral polymerase (L) gene expression, viral gene expression is not negatively impacted or increased by the HN-L intergenic insertion. Furthermore, the virus can be engineered to express a foreign gene while still retaining the ability to grow to high titers in cell culture. The recombinant NDV selectively replicates in and kills tumor cells and is able to drive potent tumor growth inhibition following intratumoral or intravenous administration in a mouse tumor model. The candidate is well positioned for clinical development as an oncolytic virus. IMPORTANCE: Avian paramyxovirus type 1, NDV, has been an attractive oncolytic agent for cancer virotherapy. However, this virus can cause epidemic disease in poultry, and concerns about the potential environmental and economic impact of an NDV outbreak have precluded its clinical development. Here we describe generation and characterization of a highly potent oncolytic NDV variant that is unlikely to cause Newcastle disease in its avian host, representing an essential step toward moving NDV forward as an oncolytic agent. Several attenuation mechanisms have been genetically engineered into the recombinant NDV that reduce chicken pathogenicity to a level that is acceptable worldwide without impacting viral production in cell culture. The selective tumor replication of this recombinant NDV, both in vitro and in vivo, along with efficient tumor cell killing makes it an attractive oncolytic virus candidate that may provide clinical benefit to patients.


Assuntos
Neoplasias Experimentais/terapia , Neoplasias Experimentais/virologia , Neoplasias/terapia , Vírus da Doença de Newcastle/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Animais , DNA Intergênico/genética , Expressão Gênica , Terapia Genética , Humanos , Injeções Intravenosas , Camundongos , Vírus da Doença de Newcastle/crescimento & desenvolvimento , Vírus Oncolíticos/crescimento & desenvolvimento , Recombinação Genética , Genética Reversa/métodos , Replicação Viral/genética
12.
J Gen Virol ; 97(2): 496-508, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26602205

RESUMO

Oncolytic virotherapy is a unique cancer therapeutic that encompasses tumour cell lysis through both virus replication and programmed cell death (PCD) pathways. Nonetheless, clinical efficacy is relatively modest, likely related to the immunosuppressive tumour milieu. Our studies use the herpes simplex virus type 2 (HSV-2)-based oncolytic virus ΔPK that has documented anti-tumour activity associated with virus replication, PCD and cancer stem cell lysis. They are designed to examine whether ΔPK-mediated oncolysis includes the ability to reverse the immunosuppressive tumour microenvironment by altering the balance of cytokines directly secreted by the melanoma cells and to define its mechanism. Here, we show that melanoma cells secreted the immunosuppressive cytokine IL-10, and that secretion was inhibited by ΔPK through virus replication and c-Jun N-terminal kinase/c-Jun activation. ΔPK-induced IL-10 inhibition upregulated surface expression of MHC class I chain-related protein A, the ligand for the activating NKG2D receptor expressed on NK- and cytotoxic T-cells. Concomitantly, ΔPK also upregulated the secretion of inflammatory cytokines TNF-α, granulocyte macrophage colony-stimulating factor and IL-1ß through autophagy-mediated activation of Toll-like receptor 2 pathways and pyroptosis, and it inhibited the expression of the negative immune checkpoint regulator cytotoxic T-lymphocyte antigen 4. Pharmacologic inhibition of these processes significantly reduces the oncolytic activity of ΔPK.


Assuntos
Herpesvirus Humano 2/crescimento & desenvolvimento , Tolerância Imunológica , Interleucina-10/metabolismo , Melanoma/imunologia , Melanoma/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/crescimento & desenvolvimento , Animais , Apoptose , Autofagia , Linhagem Celular , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Receptor 2 Toll-Like/metabolismo , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo
13.
J Virol ; 89(13): 6711-24, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25878115

RESUMO

UNLABELLED: High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. IMPORTANCE: Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We tested a series of chimeric viruses containing genes coding for VSV, together with a gene coding for the glycoprotein from other viruses, including Ebola virus, Lassa virus, LCMV, rabies virus, and Marburg virus, which was substituted for the VSV glycoprotein gene. Ebola and Lassa chimeric viruses were safe in the brain and targeted brain tumors. Lassa-VSV was particularly effective, showed no adverse side effects even when injected directly into the brain, and targeted and destroyed two different types of deadly brain cancer, including glioblastoma and melanoma.


Assuntos
Neoplasias Encefálicas/terapia , Vírus Lassa/crescimento & desenvolvimento , Vírus Oncolíticos/crescimento & desenvolvimento , Vesiculovirus/crescimento & desenvolvimento , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Vírus Lassa/genética , Masculino , Camundongos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Ratos , Recombinação Genética , Resultado do Tratamento , Vesiculovirus/genética
14.
J Neurovirol ; 22(6): 725-735, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27311457

RESUMO

Oncolytic viruses have the ability to infect tumor cells and leave healthy cells intact. In this study, bovine herpesvirus 1 (BHV1; Los Angeles, Cooper, and SV56/90 strains) and bovine herpesvirus 5 (BHV5; SV507/99 and GU9457818 strains) were used to infect two neuronal tumor cell lineages: neuro2a (mouse neuroblastoma cells) and C6 (rat glial cells). BHV1 and BHV5 strains infected both cell lines and positively correlated with viral antigen detection (p < 0.005). When neuro2a cells were infected by Los Angeles, SV507/99, and GU9457818 strains, 40 % of infected cells were under early apoptosis and necroptosis pathways. Infected C6 cells were >40 % in necroptosis phase when infected by BHV5 (GU9457818 strain). Blocking caspase activation did not interfere with cell death. However, when necroptosis was blocked, 60-80 % of both infected cells with either virus switched to early apoptosis pathway with no interference with virus replication. Moreover, reactive oxygen species production and mitochondrial membrane dysfunction were detected at high levels in both infected cell lines. In spite of apoptosis and necroptosis blockage, tumor necrosis factor alpha (TNFA) and virus transcription were positively correlated for all viral strains studied. Thus, these results contribute to the characterization of BHV1 and BHV5 as potential oncolytic viruses for non-human cells. Nonetheless, the mechanisms underlying their oncolytic activity in human cells are still to be determined.


Assuntos
Apoptose/genética , Herpesvirus Bovino 1/crescimento & desenvolvimento , Herpesvirus Bovino 5/crescimento & desenvolvimento , Necrose/virologia , Neuroglia/virologia , Neurônios/virologia , Animais , Antígenos Virais/genética , Bovinos , Linhagem Celular Tumoral , Expressão Gênica , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 5/genética , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Necrose/genética , Necrose/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/crescimento & desenvolvimento , Especificidade de Órgãos , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Replicação Viral
15.
Appl Microbiol Biotechnol ; 100(19): 8325-35, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27557721

RESUMO

Conditionally replicating adenoviruses (CRAds), or known as replication-selective adenoviruses, were discovered as oncolytic gene vectors several years ago. They have a strong ability of scavenging tumor and lesser toxicity to normal tissue. CRAds not only have a tumor-killing ability but also can combine with gene therapy, radiotherapy, and chemotherapy to induce tumor cell apoptosis. In this paper, we review the structure of CRAds and CRAd vectors and summarize the current application of CRAds in tumor detection as well as in radiotherapy and suicide gene-mediating chemotherapy. We also propose further research strategies that can improve the application value of CRAds, including enhancing tumor destruction effect, further reducing toxic effect, reducing immunogenicity, constructing CRAds that can target tumor stem cells, and trying to use mesenchymal stem cells (MSCs) as the carriers for oncolytic adenoviruses. As their importance to cancer diagnosis, gene-radiation, and chemotherapy, CRAds may play a considerable role in clinical diagnosis and various cancer treatments in the future.


Assuntos
Adenoviridae/crescimento & desenvolvimento , Tratamento Farmacológico/métodos , Terapia Genética/métodos , Neoplasias/diagnóstico , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Radioterapia/métodos , Adenoviridae/genética , Diagnóstico Precoce , Vírus Oncolíticos/genética , Vírus Oncolíticos/crescimento & desenvolvimento , Replicação Viral
16.
Mol Ther ; 23(1): 202-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25292189

RESUMO

Oncolytic viral therapy utilizes a tumor-selective replicating virus which preferentially infects and destroys cancer cells and triggers antitumor immunity. The Western Reserve strain of vaccinia virus (VV) is the most virulent strain of VV in animal models and has been engineered for tumor selectivity through two targeted gene deletions (vvDD). We performed the first-in-human phase 1, intratumoral dose escalation clinical trial of vvDD in 16 patients with advanced solid tumors. In addition to safety, we evaluated signs of vvDD replication and spread to distant tumors, pharmacokinetics and pharmacodynamics, clinical and immune responses to vvDD. Dose escalation proceeded without dose-limiting toxicities to a maximum feasible dose of 3 × 10(9) pfu. vvDD replication in tumors was reproducible. vvDD genomes and/or infectious particles were recovered from injected (n = 5 patients) and noninjected (n = 2 patients) tumors. At the two highest doses, vvDD genomes were detected acutely in blood in all patients while delayed re-emergence of vvDD genomes in blood was detected in two patients. Fifteen of 16 patients exhibited late symptoms, consistent with ongoing vvDD replication. In summary, intratumoral injection of the oncolytic vaccinia vvDD was well-tolerated in patients and resulted in selective infection of injected and noninjected tumors and antitumor activity.


Assuntos
Neoplasias da Mama/terapia , Neoplasias do Colo/terapia , Melanoma/terapia , Neoplasias Pancreáticas/terapia , Neoplasias Cutâneas/terapia , Vaccinia virus/imunologia , Replicação Viral/genética , Idoso , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Relação Dose-Resposta Imunológica , Feminino , Deleção de Genes , Humanos , Injeções Intralesionais , Masculino , Melanoma/imunologia , Melanoma/patologia , Pessoa de Meia-Idade , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/crescimento & desenvolvimento , Vírus Oncolíticos/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Vaccinia virus/genética , Vaccinia virus/crescimento & desenvolvimento
17.
J Gen Virol ; 96(Pt 7): 1533-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25711964

RESUMO

Hepatocellular carcinoma (HCC) carries a dismal prognosis, with advanced disease being resistant to both radiotherapy and conventional cytotoxic drugs, whilst anti-angiogenic drugs are marginally efficacious. Oncolytic viruses (OVs) offer the promise of selective cancer therapy through direct and immune-mediated mechanisms. The premise of OVs lies in their preferential genomic replication, protein expression and productive infection of malignant cells. Numerous OVs are being tested in preclinical models of HCC, with good evidence of direct and immune-mediated anti-tumour efficacy. Efforts to enhance the performance of these agents have concentrated on engineering OV cellular specificity, immune evasion, enhancing anti-tumour potency and improving delivery. The lead agent in HCC clinical trials, JX-594, a recombinant Wyeth strain vaccinia virus, has demonstrated evidence for significant benefit and earned orphan drug status. Thus, JX-594 appears to be transcending the barrier between novel laboratory science and credible clinical therapy. Relatively few other OVs have entered clinical testing, a hurdle that must be overcome if significant progress is to be made in this field. This review summarizes the preclinical and clinical experience of OV therapy in the difficult-to-treat area of HCC.


Assuntos
Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Terapia Viral Oncolítica/métodos , Terapia Viral Oncolítica/tendências , Vírus Oncolíticos/crescimento & desenvolvimento , Vírus Oncolíticos/imunologia , Animais , Antivirais/uso terapêutico , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Vírus Oncolíticos/genética , Produção de Droga sem Interesse Comercial , Vaccinia virus/genética , Vaccinia virus/crescimento & desenvolvimento , Vaccinia virus/imunologia
18.
J Virol ; 88(22): 13086-98, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25187554

RESUMO

UNLABELLED: Cancer cells are susceptible to oncolytic viruses, albeit variably. Human adenoviruses (HAdVs) are widely used oncolytic agents that have been engineered to produce progeny within the tumor and elicit bystander effects. We searched for host factors enhancing bystander effects and conducted a targeted RNA interference screen against guanine nucleotide exchange factors (GEFs) of small GTPases. We show that the unfolded protein response (UPR), which is readily inducible in aggressive tumor cells, enhances melanoma or epithelial cancer cell killing upon HAdV infection. UPR was triggered by knockdown of Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF-1) or the GBF-1 inhibitor golgicide A (GCA) and stimulated HAdV infection. GBF-1 is a GEF for ADP ribosylation factors (Arfs) regulating endoplasmic reticulum (ER)-to-Golgi apparatus and intra-Golgi apparatus membrane transport. Cells treated with GCA enhanced HAdV-induced cytopathic effects in epithelial and melanoma cancer cells but not normal cells, if the drug was applied several hours prior to HAdV inoculation. This was shown by real-time label-free impedance measurements using the xCELLigence system. GCA-treated cells contained fewer incoming HAdVs than control cells, but GCA treatment boosted HAdV titers and spreading in cancer cells. GCA enhanced viral gene expression or transgene expression from the cytomegalovirus promoter of B- or C-species HAdVs but did not enhance viral early region 1A (E1A) expression in uninfected cell lines or cells transfected with plasmid reporter DNA. The UPR-enhanced cell killing required the nuclease activity of the UPR sensor inositol-requiring enzyme 1 (IRE-1) and X box binding protein 1 (XBP-1), which alleviate ER stress. The collective results show that chemical UPR induction and viruses boost tumor cell killing by enhancing oncolytic viral efficacy. IMPORTANCE: Cancer is difficult to combat. A wide range of oncolytic viruses show promise for killing cancer cells, yet the efficacy of oncolytic killing is low. We searched for host factors enhancing adenovirus cancer cell killing and found that the knockdown of Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF-1) or chemical inhibition of GBF-1 enhanced adenovirus infection by triggering the IRE-1/XBP-1 branch of the unfolded protein response (UPR). IRE-1/XBP-1 promote cell survival and enhanced the levels of the adenoviral immediate early gene product E1A, virus spreading, and killing of cancer cells. Aggressive tumor cells depend on a readily inducible UPR and, hence, present prime targets for a combined strategy involving adenoviruses and small chemicals inducing UPR.


Assuntos
Morte Celular , Células Epiteliais/virologia , Melanócitos/virologia , Vírus Oncolíticos/crescimento & desenvolvimento , Resposta a Proteínas não Dobradas , Linhagem Celular Tumoral , Células Epiteliais/fisiologia , Humanos , Melanócitos/fisiologia
19.
J Virol ; 88(22): 13149-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25187540

RESUMO

UNLABELLED: Translation machinery is a major recipient of the principal mitogenic signaling networks involving Raf-ERK1/2 and phosphoinositol 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR). Picornavirus internal ribosomal entry site (IRES)-mediated translation and cytopathogenic effects are susceptible to the status of such signaling cascades in host cells. We determined that tumor-specific cytotoxicity of the poliovirus/rhinovirus chimera PVSRIPO is facilitated by Raf-ERK1/2 signals to the mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) and its effects on the partitioning/activity of the Ser/Arg (SR)-rich protein kinase (SRPK) (M. C. Brown, J. D. Bryant, E. Y. Dobrikova, M. Shveygert, S. S. Bradrick, V. Chandramohan, D. D. Bigner, and M, Gromeier, J. Virol. 22:13135-13148, 2014, doi:http://dx.doi.org/10.1128/JVI.01883-14). Here, we show that MNK regulates SRPK via mTOR and AKT. Our investigations revealed a MNK-controlled mechanism acting on mTORC2-AKT. The resulting suppression of AKT signaling attenuates SRPK activity to enhance picornavirus type 1 IRES translation and favor PVSRIPO tumor cell toxicity and killing. IMPORTANCE: Oncolytic immunotherapy with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES, is demonstrating early promise in clinical trials with intratumoral infusion in recurrent glioblastoma (GBM). Our investigations demonstrate that the core mechanistic principle of PVSRIPO, tumor-selective translation and cytotoxicity, relies on constitutive ERK1/2-MNK signals that counteract the deleterious effects of runaway AKT-SRPK activity in malignancy.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/metabolismo , Proteína Oncogênica v-akt/metabolismo , Vírus Oncolíticos/crescimento & desenvolvimento , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina , Vírus Oncolíticos/genética , Poliovirus/genética , Poliovirus/crescimento & desenvolvimento , Rhinovirus/genética , Rhinovirus/crescimento & desenvolvimento
20.
J Virol ; 88(10): 5263-76, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24574398

RESUMO

UNLABELLED: Novel therapies employing oncolytic viruses have emerged as promising anticancer modalities. The cure of particularly aggressive malignancies requires induction of immunogenic cell death (ICD), coupling oncolysis with immune responses via calreticulin, ATP, and high-mobility group box protein B1 (HMGB1) release from dying tumor cells. The present study shows that in human pancreatic cancer cells (pancreatic ductal adenocarcinoma [PDAC] cells n=4), oncolytic parvovirus H-1 (H-1PV) activated multiple interconnected death pathways but failed to induce calreticulin exposure or ATP release. In contrast, H-1PV elevated extracellular HMGB1 levels by 4.0±0.5 times (58%±9% of total content; up to 100 ng/ml) in all infected cultures, whether nondying, necrotic, or apoptotic. An alternative secretory route allowed H-1PV to overcome the failure of gemcitabine to trigger HMGB1 release, without impeding cytotoxicity or other ICD activities of the standard PDAC medication. Such broad resistance of H-1PV-induced HMGB1 release to apoptotic blockage coincided with but was uncoupled from an autocrine interleukin-1ß (IL-1ß) loop. That and the pattern of viral determinants maintained in gemcitabine-treated cells suggested the activation of an inflammasome/caspase 1 (CASP1) platform alongside DNA detachment and/or nuclear exclusion of HMGB1 during early stages of the viral life cycle. We concluded that H-1PV infection of PDAC cells is signaled through secretion of the alarmin HMGB1 and, besides its own oncolytic effect, might convert drug-induced apoptosis into an ICD process. A transient arrest of cells in the cyclin A1-rich S phase would suffice to support compatibility of proliferation-dependent H-1PV with cytotoxic regimens. These properties warrant incorporation of the oncolytic virus H-1PV, which is not pathogenic in humans, into multimodal anticancer treatments. IMPORTANCE: The current therapeutic concepts targeting aggressive malignancies require an induction of immunogenic cell death characterized by exposure of calreticulin (CRT) as well as release of ATP and HMGB1 from dying cells. In pancreatic tumor cells (PDAC cells) infected with the oncolytic parvovirus H-1PV, only HMGB1 was released by all infected cells, whether nondying, necrotic, or succumbing to one of the programmed death pathways, including contraproductive apoptosis. Our data suggest that active secretion of HMGB1 from PDAC cells is a sentinel reaction emerging during early stages of the viral life cycle, irrespective of cell death, that is compatible with and complements cytotoxic regimens. Consistent induction of HMGB1 secretion raised the possibility that this reaction might be a general "alarming" phenomenon characteristic of H-1PV's interaction with the host cell; release of IL-1ß points to the possible involvement of a danger-sensing inflammasome platform. Both provide a basis for further virus-oriented studies.


Assuntos
Antineoplásicos/metabolismo , Morte Celular , Desoxicitidina/análogos & derivados , Células Epiteliais/fisiologia , Vírus Oncolíticos/crescimento & desenvolvimento , Parvovirus/crescimento & desenvolvimento , Linhagem Celular Tumoral , Desoxicitidina/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Proteína HMGB1/metabolismo , Humanos , Transdução de Sinais , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA