Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 158(4): 822-832, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25126787

RESUMO

Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, nonthermal motion. Here, we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations. Using FSM, we show that force fluctuations substantially enhance intracellular movement of small and large components. The fluctuations are three times larger in malignant cells than in their benign counterparts. We further demonstrate that vimentin acts globally to anchor organelles against randomly fluctuating forces in the cytoplasm, with no effect on their magnitude. Thus, FSM has broad applications for understanding the cytoplasm and its intracellular processes in relation to cell physiology in healthy and diseased states.


Assuntos
Citoplasma/química , Microscopia de Força Atômica/métodos , Animais , Fenômenos Biomecânicos , Embrião de Mamíferos/citologia , Fibroblastos/química , Camundongos , Proteínas/química , Vimentina/química
2.
Proc Natl Acad Sci U S A ; 119(10): e2115217119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235449

RESUMO

The cytoskeleton of eukaryotic cells is primarily composed of networks of filamentous proteins, F-actin, microtubules, and intermediate filaments. Interactions among the cytoskeletal components are important in determining cell structure and in regulating cell functions. For example, F-actin and microtubules work together to control cell shape and polarity, while the subcellular organization and transport of vimentin intermediate filament (VIF) networks depend on their interactions with microtubules. However, it is generally thought that F-actin and VIFs form two coexisting but separate networks that are independent due to observed differences in their spatial distribution and functions. In this paper, we present a closer investigation of both the structural and functional interplay between the F-actin and VIF cytoskeletal networks. We characterize the structure of VIFs and F-actin networks within the cell cortex using structured illumination microscopy and cryo-electron tomography. We find that VIFs and F-actin form an interpenetrating network (IPN) with interactions at multiple length scales, and VIFs are integral components of F-actin stress fibers. From measurements of recovery of cell contractility after transient stretching, we find that the IPN structure results in enhanced contractile forces and contributes to cell resilience. Studies of reconstituted networks and dynamic measurements in cells suggest direct and specific associations between VIFs and F-actin. From these results, we conclude that VIFs and F-actin work synergistically, both in their structure and in their function. These results profoundly alter our understanding of the contributions of the components of the cytoskeleton, particularly the interactions between intermediate filaments and F-actin.


Assuntos
Citoplasma/metabolismo , Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Biopolímeros/metabolismo , Células Cultivadas , Tomografia com Microscopia Eletrônica/métodos , Filamentos Intermediários/química , Camundongos , Vimentina/química
3.
Biochem Biophys Res Commun ; 727: 150320, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-38963984

RESUMO

Aquaporin-0 (AQP0) constitutes 50 % of the lens membrane proteome and plays important roles in lens fiber cell adhesion, water permeability, and lens transparency. Previous work has shown that specific proteins, such as calmodulin (CaM), interact with AQP0 to modulate its water permeability; however, these studies often used AQP0 peptides, rather than full-length protein, to probe these interactions. Furthermore, the specific regions of interaction of several known AQP0 interacting partners, i.e. αA and αB-crystallins, and phakinin (CP49) remain unknown. The purpose of this study was to use crosslinking mass spectrometry (XL-MS) to identify interacting proteins with full-length AQP0 in crude lens cortical membrane fractions and to determine the specific protein regions of interaction. Our results demonstrate, for the first time, that the AQP0 N-terminus can engage in protein interactions. Specific regions of interaction are elucidated for several AQP0 interacting partners including phakinin, α-crystallin, connexin-46, and connexin-50. In addition, two new interacting partners, vimentin and connexin-46, were identified.


Assuntos
Aquaporinas , Conexinas , Proteínas do Olho , Cristalino , Espectrometria de Massas , Aquaporinas/metabolismo , Aquaporinas/química , Proteínas do Olho/metabolismo , Proteínas do Olho/química , Animais , Espectrometria de Massas/métodos , Cristalino/metabolismo , Cristalino/química , Conexinas/metabolismo , Conexinas/química , Vimentina/metabolismo , Vimentina/química , Ligação Proteica , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , alfa-Cristalinas/metabolismo , alfa-Cristalinas/química
4.
Biochem Soc Trans ; 52(2): 849-860, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38451193

RESUMO

Intermediate filaments (IFs) are cytoskeletal elements involved in mechanotransduction and in the integration of cellular responses. They are versatile structures and their assembly and organization are finely tuned by posttranslational modifications. Among them, type III IFs, mainly vimentin, have been identified as targets of multiple oxidative and electrophilic modifications. A characteristic of most type III IF proteins is the presence in their sequence of a single, conserved cysteine residue (C328 in vimentin), that is a hot spot for these modifications and appears to play a key role in the ability of the filament network to respond to oxidative stress. Current structural models and experimental evidence indicate that this cysteine residue may occupy a strategic position in the filaments in such a way that perturbations at this site, due to chemical modification or mutation, impact filament assembly or organization in a structure-dependent manner. Cysteine-dependent regulation of vimentin can be modulated by interaction with divalent cations, such as zinc, and by pH. Importantly, vimentin remodeling induced by C328 modification may affect its interaction with cellular organelles, as well as the cross-talk between cytoskeletal networks, as seems to be the case for the reorganization of actin filaments in response to oxidants and electrophiles. In summary, the evidence herein reviewed delineates a complex interplay in which type III IFs emerge both as targets and modulators of redox signaling.


Assuntos
Cisteína , Filamentos Intermediários , Oxirredução , Cisteína/metabolismo , Cisteína/química , Filamentos Intermediários/metabolismo , Humanos , Animais , Vimentina/metabolismo , Vimentina/química , Processamento de Proteína Pós-Traducional , Estresse Oxidativo , Citoesqueleto/metabolismo
5.
Biochemistry (Mosc) ; 89(4): 726-736, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38831508

RESUMO

Intermediate filaments (IFs), being traditionally the least studied component of the cytoskeleton, have begun to receive more attention in recent years. IFs are found in different cell types and are specific to them. Accumulated data have shifted the paradigm about the role of IFs as structures that merely provide mechanical strength to the cell. In addition to this role, IFs have been shown to participate in maintaining cell shape and strengthening cell adhesion. The data have also been obtained that point out to the role of IFs in a number of other biological processes, including organization of microtubules and microfilaments, regulation of nuclear structure and activity, cell cycle control, and regulation of signal transduction pathways. They are also actively involved in the regulation of several aspects of intracellular transport. Among the intermediate filament proteins, vimentin is of particular interest for researchers. Vimentin has been shown to be associated with a range of diseases, including cancer, cataracts, Crohn's disease, rheumatoid arthritis, and HIV. In this review, we focus almost exclusively on vimentin and the currently known functions of vimentin intermediate filaments (VIFs). This is due to the structural features of vimentin, biological functions of its domains, and its involvement in the regulation of a wide range of basic cellular functions, and its role in the development of human diseases. Particular attention in the review will be paid to comparing the role of VIFs with the role of intermediate filaments consisting of other proteins in cell physiology.


Assuntos
Filamentos Intermediários , Vimentina , Vimentina/metabolismo , Vimentina/química , Humanos , Filamentos Intermediários/metabolismo , Animais , Proteínas de Filamentos Intermediários/metabolismo , Proteínas de Filamentos Intermediários/química
6.
Int J Mol Sci ; 25(19)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39408982

RESUMO

With the aim of improving the uncertainties associated with the correct diagnosis of seronegative rheumatoid arthritis (RA) and identifying those at risk of developing interstitial lung disease (ILD), we have designed new peptide antigens bearing three post-translational modifications (PTMs) (citrulline, homocitrulline and acetyl-lysine) related to RA that could complement existing tests based on anti-citrullinated peptide/protein antibodies (ACPAs). Several chimeric peptides were synthesized and comparatively tested as antigens in ELISAs with two cohorts of sera: 178 RAs and 110 healthy blood donors. The results indicated that although chimeric peptides containing all three PTMs and vimentin and enolase domains do not significantly outperform existing ACPA tests in terms of sensitivity and specificity, they show potential to complement current assays, especially when detecting antibodies in some seronegative patients. Furthermore, the presence of these autoantibodies significantly identified patients with RA and ILD. We can conclude that the identification of specific autoantibody profiles using synthetic antigens containing peptide domains derived from proteins present in the human joint could help in the early detection of the risk of ILD in patients with RA and be useful for adapting follow-up strategies and guiding decisions during treatment.


Assuntos
Artrite Reumatoide , Citrulinação , Peptídeos , Fosfopiruvato Hidratase , Processamento de Proteína Pós-Traducional , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/imunologia , Artrite Reumatoide/sangue , Humanos , Fosfopiruvato Hidratase/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Peptídeos/imunologia , Acetilação , Autoanticorpos/imunologia , Autoanticorpos/sangue , Citrulina/química , Citrulina/análogos & derivados , Adulto , Idoso , Índice de Gravidade de Doença , Vimentina/imunologia , Vimentina/química , Vimentina/metabolismo , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/imunologia
7.
Glycobiology ; 33(1): 17-37, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36190502

RESUMO

O-linked ß-N-acetylglucosamine (O-GlcNAc)-modified proteins are post-translationally modified with GlcNAc conjugated to serine and threonine residues. This modification is associated with various physiological functions such as serine and threonine phosphorylation and Notch signaling. Here, we demonstrated that O-GlcNAc-modified proteins leaked from dead cells and GlcNAc-bearing polymers mimicking the multivalent GlcNAc moiety of these proteins induced anti-fibrotic activities, such as the suppression of α-smooth muscle actin and collagen and the induction of matrix metalloprotease 1 in myofibroblasts. We have previously reported that O-GlcNAc-modified proteins and GlcNAc-bearing polymers could interact with cell surface vimentin and desmin. In the current study, it was demonstrated that a multivalent GlcNAc moiety structure of these molecules activated PI3K/Akt and p38MAPK pathway and elicited these anti-fibrotic activities in myofibroblasts by interacting with cell surface vimentin. Since the interaction of O-GlcNAc-modified proteins with desmin was observed in the fibrotic liver of carbon tetrachloride-treated mice via an in situ proximity ligation assay, it was assumed that the activated stellate cells could bind to the O-GlcNAc-modified proteins from the damaged hepatocytes. In addition, the administration of anti-O-GlcNAc antibody to inhibit the interaction exacerbated liver fibrosis in the mice. Moreover, administration of the GlcNAc-bearing polymers into carbon tetrachloride-treated mice could ameliorate liver fibrosis. Thus, O-GlcNAc-modified proteins leaked from dead cells can interact with myofibroblasts and activated stellate cells and function as fibrosis suppressors. Moreover, we anticipate that GlcNAc-bearing polymers mimicking O-GlcNAc-modified proteins will be applied as novel therapeutic tools for fibrosis.


Assuntos
Acetilglucosamina , Miofibroblastos , Animais , Camundongos , Acetilglucosamina/metabolismo , Materiais Biomiméticos/farmacologia , Tetracloreto de Carbono , Desmina/metabolismo , Cirrose Hepática , Miofibroblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Polímeros/química , Polímeros/metabolismo , Processamento de Proteína Pós-Traducional , Serina/metabolismo , Vimentina/química , Vimentina/metabolismo , Células Estreladas do Fígado/metabolismo
8.
Biomacromolecules ; 24(6): 2512-2521, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37132386

RESUMO

Within a cell, intermediate filaments interact with other cytoskeletal components, altogether providing the cell's mechanical stability. However, little attention has been drawn to intermediate filaments close to the plasma membrane. In this cortex configuration, the filaments are coupled and arranged in parallel to the membrane, and the question arises of how they react to the mechanical stretching of the membrane. To address this question, we set out to establish an in vitro system composed of a polydimethylsiloxane-supported lipid bilayer. With a uniaxial stretching device, the supported membrane was stretched up to 34% in the presence of a lipid reservoir that was provided by adding small unilamellar vesicles in the solution. After vimentin attachment to the membrane, we observed structural changes of the vimentin filaments in networks of different densities by fluorescence microscopy and atomic force microscopy. We found that individual filaments respond to the membrane stretching with a reorganization along the stretching direction as well as an intrinsic elongation, while in a dense network, mainly filament reorganization was observed.


Assuntos
Citoesqueleto , Filamentos Intermediários , Filamentos Intermediários/química , Filamentos Intermediários/metabolismo , Vimentina/análise , Vimentina/química , Vimentina/metabolismo , Membrana Celular , Membranas
9.
Biophys J ; 121(6): 1094-1104, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35124070

RESUMO

Intermediate filament (IF) proteins assemble into highly flexible filaments that organize into complex cytoplasmic networks: keratins in all types of epithelia, vimentin in endothelia, and desmin in muscle. Since IF elongation proceeds via end-to-end annealing of unit-length filaments and successively of progressively growing filaments, it is important to know how their remarkable flexibility, i.e., their persistence length lp, influences the assembly kinetics. In fact, their lp ranges between 0.3 µm (keratin K8/K18) and 1.0 µm (vimentin and desmin), and thus is orders of magnitude lower than that of microtubules and F-actin. Here, we present a unique mathematical model, which implements the semiflexible nature of the three IF types based on published semiflexible polymers theories and depends on a single free parameter k0. Calibrating this model to filament mean length dynamics of the three proteins, we demonstrate that the persistence length is indeed essential to accurately describe their assembly kinetics. Furthermore, we reveal that the difference in flexibility alone does not explain the significantly faster assembly rate of keratin filaments compared with that of vimentin. Likewise, desmin assembles approximately six times faster than vimentin, even though both their filaments exhibit the same lp value. These data strongly indicate that differences in their individual amino acid sequences significantly impact the assembly rates. Nevertheless, using a single k0 value for each of these three key representatives of the IF protein family, our advanced model does accurately describe the length distribution and mean length dynamics and provides effective filament assembly rates. It thus provides a tool for future investigations on the impact of posttranslational modifications or amino acid changes of IF proteins on assembly kinetics. This is an important issue, as the discovery of mutations in IF genes causing severe human disease, particularly for desmin and keratins, is steadily increasing.


Assuntos
Proteínas de Filamentos Intermediários , Filamentos Intermediários , Desmina/química , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Filamentos Intermediários/metabolismo , Queratinas/química , Queratinas/metabolismo , Modelos Teóricos , Vimentina/química
10.
FASEB J ; 35(3): e21389, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33583081

RESUMO

The glial fibrillary acidic protein (GFAP) is a type III intermediate filament (IF) protein that is highly expressed in astrocytes, neural stem cells, and in gliomas. Gliomas are a heterogeneous group of primary brain tumors that arise from glia cells or neural stem cells and rely on accurate diagnosis for prognosis and treatment strategies. GFAP is differentially expressed between glioma subtypes and, therefore, often used as a diagnostic marker. However, GFAP is highly regulated by the process of alternative splicing; many different isoforms have been identified. Differential expression of GFAP isoforms between glioma subtypes suggests that GFAP isoform-specific analyses could benefit diagnostics. In this study we report on the differential expression of a new GFAP isoform between glioma subtypes, GFAPµ. A short GFAP transcript resulting from GFAP exon 2 skipping was detected by RNA sequencing of human glioma. We show that GFAPµ mRNA is expressed in healthy brain tissue, glioma cell lines, and primary glioma cells and that it translates into a ~21 kDa GFAP protein. 21 kDa GFAP protein was detected in the IF protein fraction isolated from human spinal cord as well. We further show that induced GFAPµ expression disrupts the GFAP IF network. The characterization of this new GFAP isoform adds on to the numerous previously identified GFAP splice isoforms. It emphasizes the importance of studying the contribution of IF splice variants to specialized functions of the IF network and to glioma research.


Assuntos
Processamento Alternativo , Neoplasias Encefálicas/metabolismo , Proteína Glial Fibrilar Ácida/biossíntese , Glioma/metabolismo , Encéfalo/metabolismo , Linhagem Celular Tumoral , Proteína Glial Fibrilar Ácida/química , Proteína Glial Fibrilar Ácida/genética , Humanos , Biossíntese de Proteínas , Isoformas de Proteínas , Vimentina/química
11.
Bioessays ; 42(11): e2000078, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32893352

RESUMO

Intermediate filaments (IFs) formed by vimentin are less understood than their cytoskeletal partners, microtubules and F-actin, but the unique physical properties of IFs, especially their resistance to large deformations, initially suggest a mechanical function. Indeed, vimentin IFs help regulate cell mechanics and contractility, and in crowded 3D environments they protect the nucleus during cell migration. Recently, a multitude of studies, often using genetic or proteomic screenings show that vimentin has many non-mechanical functions within and outside of cells. These include signaling roles in wound healing, lipogenesis, sterol processing, and various functions related to extracellular and cell surface vimentin. Extracellular vimentin is implicated in marking circulating tumor cells, promoting neural repair, and mediating the invasion of host cells by viruses, including SARS-CoV, or bacteria such as Listeria and Streptococcus. These findings underscore the fundamental role of vimentin in not only cell mechanics but also a range of physiological functions. Also see the video abstract here https://youtu.be/YPfoddqvz-g.


Assuntos
Filamentos Intermediários/fisiologia , Mecanotransdução Celular/fisiologia , Vimentina/fisiologia , Animais , Fenômenos Fisiológicos Bacterianos , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Filamentos Intermediários/química , Fenômenos Mecânicos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Vimentina/química , Internalização do Vírus
12.
Biochem J ; 478(12): 2233-2245, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34037204

RESUMO

Caspases are a family of enzymes that play roles in cell death and inflammation. It has been suggested that in the execution phase of the apoptotic pathway, caspase-3, -6 and -7 are involved. The substrate specificities of two proteases (caspases 3 and 7) are highly similar, which complicates the design of compounds that selectively interact with a single enzyme exclusively. The recognition of residues other than Asp in the P1 position of the substrate by caspase-3/-7 has been reported, promoting interest in the effects of phosphorylation of amino acids in the direct vicinity of the scissile bond. To evaluate conflicting reports on this subject, we synthesized a series of known caspase-3 and -7 substrates and phosphorylated analogs, performed enzyme kinetic assays and mapped the peptide cleavage sites using internally quenched fluorescent peptide substrates. Caspases 3 and 7 will tolerate pSer at the P1 position but only poorly at the P2' position. Our investigation demonstrates the importance of peptide length and composition in interpreting sequence/activity relationships. Based on the results, we conclude that the relationship between caspase-3/-7 and their substrates containing phosphorylated amino acids might depend on the steric conditions and not be directly connected with ionic interactions. Thus, the precise effect of phospho-amino acid residues located in the vicinity of the cleaved bond on the regulation of the substrate specificity of caspases remains difficult to predict. Our observations allow to predict that natural phosphorylated proteins may be cleaved by caspases, but only when extended substrate binding site interactions are satisfied.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Caspase 3/metabolismo , Caspase 7/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteólise , Serina/metabolismo , Fatores de Transcrição/química , Vimentina/química , Sítios de Ligação , Caspase 3/genética , Caspase 7/genética , Humanos , Cinética , Modelos Moleculares , Fosforilação , Serina/química , Especificidade por Substrato , Proteínas de Sinalização YAP
13.
Phys Rev Lett ; 127(10): 108101, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34533352

RESUMO

We investigate the rheological properties of interpenetrating networks reconstituted from the main cytoskeletal components: filamentous actin, microtubules, and vimentin intermediate filaments. The elastic modulus is determined largely by actin, with little contribution from either microtubules or vimentin. However, vimentin dramatically impacts the relaxation, with even small amounts significantly increasing the relaxation time of the interpenetrating network. This highly unusual decoupling between dissipation and elasticity may reflect weak attractive interactions between vimentin and actin networks.


Assuntos
Filamentos Intermediários/química , Modelos Químicos , Vimentina/química , Actinas/química , Actinas/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Células Eucarióticas , Filamentos Intermediários/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Reologia/métodos , Vimentina/metabolismo
14.
J Nanobiotechnology ; 19(1): 185, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134721

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) are the dominant factor leading to tumor metastasis. This study aims to investigate the effect of disparate sources of CTCs on the treatment and prognosis of patients with advanced tumors by analyzing the number and gene mutations change of CTCs in arterial and venous blood in patients with advanced tumors. RESULTS: A CTCs sorting system was constructed based on Vimentin-immunolipid magnetic balls (Vi-IMB) and EpCAM immunolipid magnetic balls (Ep-IMB). Results showed that the prepared Ep-IMB and Vi-IMB had lower cytotoxicity, better specificity and sensitivity. The number of arterial CTCs was higher than that of venous CTCs, with a statistically significant difference (P < 0.05). Moreover, the prognosis of the low positive group of total CTCs in arterial blood and venous blood was higher than that of the high positive group, with a statistical significance (P < 0.05). The genetic testing results showed that the targeted drug gene mutations in tissues, arterial CTCs and venous CTCs showed a complementary trend, indicating that there was heterogeneity among different tumor samples. CONCLUSIONS: CTCs in blood can be efficiently captured by the CTCs sorting system based on Vi-LMB/Ep-LMB, and CTCs detection in arterial blood can be utilized to more accurately evaluate the prognosis and predict postoperative progress. It is further confirmed that tumor samples from disparate sources are heterogeneous, providing a reference basis for gene mutation detection before clinical targeted drug treatment, and the detection of CTCs in arterial blood has more potential clinical application value. TRIAL REGISTRATION: The Ethics Committee of Putuo Hospital, PTEC-A-2019-18-1. Registered 24 September 2019.


Assuntos
Biomarcadores Tumorais/genética , Molécula de Adesão da Célula Epitelial/genética , Magnetismo , Células Neoplásicas Circulantes , Vimentina/genética , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/química , Fluorescência , Humanos , Fenômenos Magnéticos , Mutação , Prognóstico , Vimentina/química
15.
Mediators Inflamm ; 2021: 7534601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373677

RESUMO

BACKGROUND: Telocytes (TCs) are a distinct type of interstitial cells that play a vital role in the pathogenesis of ulcerative colitis and colonic tissue hemostasis. The aim of this study was to examine the effect of nanocurcumin (NC) on the morphometric and immunohistochemical characterization of TCs in the ulcerative colitis (UC) rat model. METHODS: Forty rats were randomly divided into control, NC, UC, and UC+NC groups. At the end of the experiment, the colon was dissected and prepared for histopathological and immunohistochemical assessment. Tissue homogenates were prepared for real-time PCR assessment of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta (TGF-ß) gene expression. Our results revealed extensive mucosal damage with inflammatory cell infiltration, significant reduction of CD34, and vimentin immunostained TCs in the colon of the UC group with significant elevation of expression of IL-6, TNF-α, and TGF-ß. The UC+NC-treated group revealed significant elevation of TC count compared to the UC group besides, a significant reduction of the three gene expression. CONCLUSION: NC successfully targeted the colonic tissue, improved the mucosal lesion, preserve TCs distribution, and count through its anti-inflammatory and fibrinolytic properties.


Assuntos
Colite Ulcerativa/patologia , Colo/patologia , Curcumina/química , Nanopartículas/química , Telócitos/patologia , Animais , Colite , Colo/metabolismo , Modelos Animais de Doenças , Fibrinólise , Regulação da Expressão Gênica , Imuno-Histoquímica , Inflamação , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Fator de Crescimento Transformador beta1/biossíntese , Fator de Necrose Tumoral alfa/metabolismo , Vimentina/química
16.
Molecules ; 26(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34770931

RESUMO

The application of aptamers in biomedicine is emerging as an essential technology in the field of cancer research. As small single-stranded DNA or RNA ligands with high specificity and low immunogenicity for their targets, aptamers provide many advantages in cancer therapeutics over protein-based molecules, such as antibodies. Vimentin is an intermediate filament protein that is overexpressed in endothelial cells of cancerous tissue. High expression levels of vimentin have been associated with increased capacity for migration and invasion of the tumor cells. We have selected and identified thioated aptamers with high specificity for vimentin using human ovarian cancer tissues. Tentative binding motifs were chosen for two vimentin aptamers based on predicted secondary structures. Each of these shorter, tentative binding motifs was synthesized, purified, and characterized via cell binding assays. Two vimentin binding motifs with high fidelity binding were selected and further characterized via cell and tissue binding assays, as well as flow cytometric analysis. The equilibrium binding constants of these small thioated aptamer constructs were also determined. Future applications for the vimentin binding aptamer motifs include conjugation of the aptamers to synthetic dyes for use in targeted imaging and therapy, and ultimately more detailed and precise monitoring of treatment response and tumor progression in ovarian pathology.


Assuntos
Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Motivos de Nucleotídeos , Vimentina/genética , Aptâmeros de Nucleotídeos/química , Sítios de Ligação , Biomarcadores Tumorais , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Cinética , Conformação de Ácido Nucleico , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Ligação Proteica , Técnica de Seleção de Aptâmeros/métodos , Vimentina/química , Vimentina/metabolismo
17.
Anal Chem ; 92(7): 5178-5184, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32148021

RESUMO

Circulating tumor cells (CTCs) undergoing epithelial mesenchymal transition (EMT) play an essential role in metastasis and have a better correlation with poor disease outcomes, but the most current affinity-based enrichment methods rely on targeting epithelial markers, which are less effective in capturing CTCs undergoing EMT. Herein, we identified and optimized an aptamer (ZY5C) sequence with high binding affinity and specificity against cell surface vimentin (CSV), which is overexpressed on the post-EMT CTCs. Not only can the hairpin-structured ZY5C aptamer specifically recognize a number of cancer cells with native CSV expression, but it can also bind to CSV expressed on EMT-cells. The Kd value of the ZY5C aptamer against CSV-positive T24 cells was found to be 38 ± 4 nM. Using the evolved ZY5C aptamer and multivalent ZY5C aptamer-functionalized chip, we were able to isolate CTCs from the blood of adenocarcinoma, sarcoma, and carcinosarcoma patients. Overall, this ZY5C aptamer and isolation method bring a fresh approach to CTCs analysis, which not only detects CTCs from nonepithelial origin, but also provides an efficient way to in-depth study the role of post-EMT CTCs in clinical application and metastasis mechanisms.


Assuntos
Aptâmeros de Nucleotídeos/química , Transição Epitelial-Mesenquimal , Células Neoplásicas Circulantes/metabolismo , Vimentina/química , Linhagem Celular , Citometria de Fluxo , Células HEK293 , Humanos , Células Neoplásicas Circulantes/patologia , Vimentina/isolamento & purificação
18.
Development ; 144(8): 1412-1424, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28242612

RESUMO

Mesoderm induction begins during gastrulation. Recent evidence from several vertebrate species indicates that mesoderm induction continues after gastrulation in neuromesodermal progenitors (NMPs) within the posteriormost embryonic structure, the tailbud. It is unclear to what extent the molecular mechanisms of mesoderm induction are conserved between gastrula and post-gastrula stages of development. Fibroblast growth factor (FGF) signaling is required for mesoderm induction during gastrulation through positive transcriptional regulation of the T-box transcription factor brachyury We find in zebrafish that FGF is continuously required for paraxial mesoderm (PM) induction in post-gastrula NMPs. FGF signaling represses the NMP markers brachyury (ntla) and sox2 through regulation of tbx16 and msgn1, thereby committing cells to a PM fate. FGF-mediated PM induction in NMPs functions in tight coordination with canonical Wnt signaling during the epithelial to mesenchymal transition (EMT) from NMP to mesodermal progenitor. Wnt signaling initiates EMT, whereas FGF signaling terminates this event. Our results indicate that germ layer induction in the zebrafish tailbud is not a simple continuation of gastrulation events.


Assuntos
Transição Epitelial-Mesenquimal , Fatores de Crescimento de Fibroblastos/metabolismo , Mesoderma/embriologia , Sistema Nervoso/citologia , Sistema Nervoso/embriologia , Células-Tronco/citologia , Cauda/embriologia , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Gástrula/metabolismo , Imageamento Tridimensional , Mesoderma/citologia , Mesoderma/metabolismo , Células-Tronco/metabolismo , Proteínas com Domínio T , Vimentina/química , Vimentina/metabolismo , Xenopus laevis/embriologia , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra
19.
Phys Biol ; 18(1): 011001, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32992303

RESUMO

The proper functions of tissues depend on the ability of cells to withstand stress and maintain shape. Central to this process is the cytoskeleton, comprised of three polymeric networks: F-actin, microtubules, and intermediate filaments (IFs). IF proteins are among the most abundant cytoskeletal proteins in cells; yet they remain some of the least understood. Their structure and function deviate from those of their cytoskeletal partners, F-actin and microtubules. IF networks show a unique combination of extensibility, flexibility and toughness that confers mechanical resilience to the cell. Vimentin is an IF protein expressed in mesenchymal cells. This review highlights exciting new results on the physical biology of vimentin intermediate filaments and their role in allowing whole cells and tissues to cope with stress.


Assuntos
Citoesqueleto/química , Polímeros/química , Vimentina/química , Animais , Humanos , Camundongos , Fenômenos Físicos
20.
Proc Natl Acad Sci U S A ; 114(20): 5195-5200, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28465431

RESUMO

The intermediate filament vimentin is required for cells to transition from the epithelial state to the mesenchymal state and migrate as single cells; however, little is known about the specific role of vimentin in the regulation of mesenchymal migration. Vimentin is known to have a significantly greater ability to resist stress without breaking in vitro compared with actin or microtubules, and also to increase cell elasticity in vivo. Therefore, we hypothesized that the presence of vimentin could support the anisotropic mechanical strain of single-cell migration. To study this, we fluorescently labeled vimentin with an mEmerald tag using TALEN genome editing. We observed vimentin architecture in migrating human foreskin fibroblasts and found that network organization varied from long, linear bundles, or "fibers," to shorter fragments with a mesh-like organization. We developed image analysis tools employing steerable filtering and iterative graph matching to characterize the fibers embedded in the surrounding mesh. Vimentin fibers were aligned with fibroblast branching and migration direction. The presence of the vimentin network was correlated with 10-fold slower local actin retrograde flow rates, as well as spatial homogenization of actin-based forces transmitted to the substrate. Vimentin fibers coaligned with and were required for the anisotropic orientation of traction stresses. These results indicate that the vimentin network acts as a load-bearing superstructure capable of integrating and reorienting actin-based forces. We propose that vimentin's role in cell motility is to govern the alignment of traction stresses that permit single-cell migration.


Assuntos
Vimentina/química , Vimentina/fisiologia , Actinas/química , Animais , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Elasticidade , Transição Epitelial-Mesenquimal/fisiologia , Fibroblastos/química , Humanos , Filamentos Intermediários/química , Filamentos Intermediários/fisiologia , Fenômenos Mecânicos , Microtúbulos/química , Fibras de Estresse/química , Fibras de Estresse/fisiologia , Vimentina/metabolismo , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA