RESUMO
ABSTRACT: The switch from fetal hemoglobin (γ-globin, HBG) to adult hemoglobin (ß-globin, HBB) gene transcription in erythroid cells serves as a paradigm for a complex and clinically relevant developmental gene regulatory program. We previously identified HIC2 as a regulator of the switch by inhibiting the transcription of BCL11A, a key repressor of HBG production. HIC2 is highly expressed in fetal cells, but the mechanism of its regulation is unclear. Here we report that HIC2 developmental expression is controlled by microRNAs (miRNAs), as loss of global miRNA biogenesis through DICER1 depletion leads to upregulation of HIC2 and HBG messenger RNA. We identified the adult-expressed let-7 miRNA family as a direct posttranscriptional regulator of HIC2. Ectopic expression of let-7 in fetal cells lowered HIC2 levels, whereas inhibition of let-7 in adult erythroblasts increased HIC2 production, culminating in decommissioning of a BCL11A erythroid enhancer and reduced BCL11A transcription. HIC2 depletion in let-7-inhibited cells restored BCL11A-mediated repression of HBG. Together, these data establish that fetal hemoglobin silencing in adult erythroid cells is under the control of a miRNA-mediated inhibitory pathway (let-7 ⣠HIC2 ⣠BCL11A ⣠HBG).
Assuntos
Hemoglobina Fetal , Fatores de Transcrição Kruppel-Like , MicroRNAs , Proteínas Repressoras , Humanos , Globinas beta/genética , Globinas beta/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Eritroblastos/metabolismo , Eritroblastos/citologia , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transcrição GênicaRESUMO
BACKGROUND: Sickle cell disease is characterized by hemolytic anemia, pain, and progressive organ damage. A high level of erythrocyte fetal hemoglobin (HbF) comprising α- and γ-globins may ameliorate these manifestations by mitigating sickle hemoglobin polymerization and erythrocyte sickling. BCL11A is a repressor of γ-globin expression and HbF production in adult erythrocytes. Its down-regulation is a promising therapeutic strategy for induction of HbF. METHODS: We enrolled patients with sickle cell disease in a single-center, open-label pilot study. The investigational therapy involved infusion of autologous CD34+ cells transduced with the BCH-BB694 lentiviral vector, which encodes a short hairpin RNA (shRNA) targeting BCL11A mRNA embedded in a microRNA (shmiR), allowing erythroid lineage-specific knockdown. Patients were assessed for primary end points of engraftment and safety and for hematologic and clinical responses to treatment. RESULTS: As of October 2020, six patients had been followed for at least 6 months after receiving BCH-BB694 gene therapy; median follow-up was 18 months (range, 7 to 29). All patients had engraftment, and adverse events were consistent with effects of the preparative chemotherapy. All the patients who could be fully evaluated achieved robust and stable HbF induction (percentage HbF/(F+S) at most recent follow-up, 20.4 to 41.3%), with HbF broadly distributed in red cells (F-cells 58.9 to 93.6% of untransfused red cells) and HbF per F-cell of 9.0 to 18.6 pg per cell. Clinical manifestations of sickle cell disease were reduced or absent during the follow-up period. CONCLUSIONS: This study validates BCL11A inhibition as an effective target for HbF induction and provides preliminary evidence that shmiR-based gene knockdown offers a favorable risk-benefit profile in sickle cell disease. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT03282656).
Assuntos
Anemia Falciforme/terapia , Hemoglobina Fetal/biossíntese , Terapia Genética , Interferência de RNA , Proteínas Repressoras/genética , gama-Globinas/metabolismo , Adolescente , Adulto , Anemia Falciforme/genética , Criança , Regulação para Baixo , Feminino , Hemoglobina Fetal/genética , Técnicas de Silenciamento de Genes , Vetores Genéticos , Humanos , Masculino , Projetos Piloto , RNA Interferente Pequeno , Proteínas Repressoras/metabolismo , Transplante Autólogo , Adulto Jovem , gama-Globinas/genéticaRESUMO
Fetal-to-adult hemoglobin switching is controlled by programmed silencing of γ-globin while the re-activation of fetal hemoglobin (HbF) is an effective strategy for ameliorating the clinical severity of ß-thalassemia and sickle cell disease. The identification of enhancer RNAs (eRNAs) related to the fetal (α2γ2) to adult hemoglobin (α2ß2) switching remains incomplete. In this study, the transcriptomes of GYPA+ cells from six ß-thalassemia patients with extreme HbF levels were sequenced to identify differences in patterns of noncoding RNA expression. It is interesting that an enhancer upstream of CHD4, an HbF-related core subunit of the NuRD complex, was differentially transcribed. We found a significantly positive correlation of eRNA-CHD4 enhancer-gene interaction using the public database of FANTOM5. Specifically, the eRNA-CHD4 expression was found to be significantly higher in both CD34+ HSPCs and HUDEP-2 than those in K562 cells which commonly expressed high level of HbF, suggesting a correlation between eRNA and HbF expression. Furthermore, prediction of transcription binding sites of cis-eQTLs and the CHD4 genomic region revealed a putative interaction site between rs73264846 and ZNF410, a known transcription factor regulating HbF expression. Moreover, in-vitro validation showed that the inhibition of eRNA could reduce the expression of HBG expression in HUDEP-2 cells. Taken together, the findings of this study demonstrate that a distal enhancer contributes to stage-specific silencing of γ-globin genes through direct modulation of CHD4 expression and provide insights into the epigenetic mechanisms of NuRD-mediated hemoglobin switching.
Assuntos
Anemia Falciforme , Talassemia beta , Adulto , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Talassemia beta/genética , Regulação da Expressão Gênica , Anemia Falciforme/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismoRESUMO
BCL11A, a zinc finger repressor, is a stage-specific transcription factor that controls the switch from fetal (HbF, α2γ2) to adult (HbA, α2ß2) hemoglobin in erythroid cells. While BCL11A was known as a factor critical for B-lymphoid cell development, its relationship to erythroid cells and HbF arose through genome-wide association studies (GWAS). Subsequent work validated its role as a silencer of γ-globin gene expression in cultured cells and mice. Erythroid-specific loss of BCL11A rescues the phenotype of engineered sickle cell disease (SCD) mice, thereby suggesting that downregulation of BCL11A expression might be beneficial in patients with SCD and ß-thalassemia. Common genetic variation in GWAS resides in an erythroid-specific enhancer within the BCL11A gene that is required for its own expression. CRISPR/Cas9 gene editing of the enhancer revealed a GATA-binding site that confers a large portion of its regulatory function. Disruption of the GATA site leads to robust HbF reactivation. Advancement of a guide RNA targeting the GATA-binding site in clinical trials has recently led to approval of first-in-man use of ex vivo CRISPR editing of hematopoietic stem/progenitor cells (HSPCs) as therapy of SCD and ß-thalassemia. Future challenges include expanding access and infrastructure for delivery of genetic therapy to eligible patients, reducing potential toxicity and costs, exploring prospects for in vivo targeting of hematopoietic stem cells (HSCs), and developing small molecule drugs that impair function of BCL11A protein as an alternative option.
Assuntos
Células Eritroides , Proteínas Repressoras , Animais , Humanos , Camundongos , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Talassemia beta/genética , Talassemia beta/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Sistemas CRISPR-Cas , Células Eritroides/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Edição de Genes/métodos , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismoRESUMO
Long noncoding RNAs (lncRNAs) are important because they are involved in a variety of life activities and have many downstream targets. Moreover, there is also increasing evidence that some lncRNAs play important roles in the expression and regulation of γ-globin genes. In our previous study, we analyzed genetic material from nucleated red blood cells (NRBCs) extracted from premature and full-term umbilical cord blood samples. Through RNA sequencing (RNA-Seq) analysis, lncRNA H19 emerged as a differentially expressed transcript between the two blood types. While this discovery provided insight into H19, previous studies had not investigated its effect on the γ-globin gene. Therefore, the focus of our study was to explore the impact of H19 on the γ-globin gene. In this study, we discovered that overexpressing H19 led to a decrease in HBG mRNA levels during erythroid differentiation in K562 cells. Conversely, in CD34+ hematopoietic stem cells and human umbilical cord blood-derived erythroid progenitor (HUDEP-2) cells, HBG expression increased. Additionally, we observed that H19 was primarily located in the nucleus of K562 cells, while in HUDEP-2 cells, H19 was present predominantly in the cytoplasm. These findings suggest a significant upregulation of HBG due to H19 overexpression. Notably, cytoplasmic localization in HUDEP-2 cells hints at its potential role as a competing endogenous RNA (ceRNA), regulating γ-globin expression by targeting microRNA/mRNA interactions.
Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Regulação para Cima , RNA Mensageiro/genética , Expressão GênicaRESUMO
Pharmacological induction of fetal hemoglobin has proven to be a promising therapeutic intervention in ß-hemoglobinopathies by reducing the globin chain imbalance and inhibiting sickle cell polymerization. Fagonia indica has shown therapeutic relevance to ß-thalassemia. Therefore, we study the ethnopharmacological potential of Fagonia indica and its biomarker compounds for their HbF induction ability for the treatment of ß-thalassemia. Here, we identify, compound 8 (triterpenoid glycosides) of F. indica. as a prominent HbF inducer in-vitro and in-vivo. Compound 8 showed potent erythroid differentiation, enhanced cellular proliferation, ample accumulation of total hemoglobin, and a strong notion of γ-globin gene expression in K562 cultures. Compound 8 treatment also revealed strong induction of erythroid differentiation and fetal hemoglobin mRNA and protein in adult erythroid precursor cells. This induction was associated with simultaneous downregulation of BCL11A and SOX6, and overexpression of the GATA-1 gene, suggesting a compound 8-mediated partial mechanism involved in the reactivation of fetal-like globin genes. The in vivo study with compound 8 (10 mg/kg) in ß-YAC mice resulted in significant HbF synthesis demonstrated by the enhanced level of F-cells (84.14 %) and an 8.85-fold increase in the γ-globin gene. Overall, the study identifies compound 8 as a new HbF-inducing entity and provides an early "proof-of-concept" to enable the initiation of preclinical and clinical studies in the development of this HbF-inducing agent for ß-thalassemia.
Assuntos
Hemoglobinopatias , Triterpenos , Talassemia beta , Humanos , Animais , Camundongos , gama-Globinas/genética , gama-Globinas/metabolismo , Talassemia beta/tratamento farmacológico , Talassemia beta/genética , Talassemia beta/metabolismo , Glicosídeos/farmacologia , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Células K562 , Fatores de Transcrição , Expressão Gênica , Proteínas RepressorasRESUMO
The human homologue of mouse Ly-1 antibody reactive clone protein (LYAR) is a putative novel regulator of γ-globin gene transcription. The LYAR DNA-binding motif (5'-GGTTAT-3') is located within the 5'-UTR of the Aγ-globin gene. The LYAR rs368698783 (G>A) polymorphism is present in ß-thalassemia patients and decreases the LYAR binding efficiency to the Aγ-globin gene. The objective of this study was to stratify ß-thalassemia patients with respect to the rs368698783 (G>A) polymorphism and to verify whether their erythroid precursor cells (ErPCs) differentially respond in vitro to selected fetal hemoglobin (HbF) inducers. The rs368698783 (G>A) polymorphism was detected by DNA sequencing, hemoglobin production by HPLC, and accumulation of globin mRNAs by RT-qPCR. We found that the LYAR rs368698783 (G>A) polymorphism is associated with high basal and induced production of fetal hemoglobin in ß-thalassemia patients. The most striking association was found using rapamycin as an HbF inducer. The results presented here could be considered important not only for basic biomedicine but also in applied translational research for precision medicine in personalized therapy of ß-thalassemia. Accordingly, our data suggest that the rs368698783 polymorphism might be considered among the parameters useful to recruit patients with the highest probability of responding to in vivo hydroxyurea (HU) treatment.
Assuntos
Células Precursoras Eritroides , Talassemia beta , Humanos , Talassemia beta/tratamento farmacológico , Talassemia beta/genética , Talassemia beta/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Precursoras Eritroides/metabolismo , Hemoglobina Fetal/análise , gama-Globinas/genética , gama-Globinas/metabolismo , Proteínas Nucleares/genética , Polimorfismo GenéticoRESUMO
Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the ß-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to be the only curative option, although the indispensable need for an HLA-matched donor markedly restricted its universal application. The evolution of gene therapy approaches made possible the ex vivo delivery of a therapeutic ß- or γ- globin gene into patient-derived hematopoietic stem cells followed by the transplantation of corrected cells into myeloablated patients, having led to high rates of transfusion independence (thalassemia) or complete resolution of painful crises (sickle cell disease-SCD). Hereditary persistence of fetal hemoglobin (HPFH), a syndrome characterized by increased γ-globin levels, when co-inherited with ß-thalassemia or SCD, converts hemoglobinopathies to a benign condition with mild clinical phenotype. The rapid development of precise genome editing tools (ZFN, TALENs, CRISPR/Cas9) over the last decade has allowed the targeted introduction of mutations, resulting in disease-modifying outcomes. In this context, genome editing tools have successfully been used for the introduction of HPFH-like mutations both in HBG1/HBG2 promoters or/and in the erythroid enhancer of BCL11A to increase HbF expression as an alternative curative approach for ß-hemoglobinopathies. The current investigation of new HbF modulators, such as ZBTB7A, KLF-1, SOX6, and ZNF410, further expands the range of possible genome editing targets. Importantly, genome editing approaches have recently reached clinical translation in trials investigating HbF reactivation in both SCD and thalassemic patients. Showing promising outcomes, these approaches are yet to be confirmed in long-term follow-up studies.
Assuntos
Anemia Falciforme , Hemoglobinopatias , Talassemia beta , Humanos , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Edição de Genes/métodos , Anemia Falciforme/genética , Anemia Falciforme/terapia , Anemia Falciforme/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Talassemia beta/genética , Talassemia beta/terapia , Talassemia beta/metabolismoRESUMO
Induction of fetal hemoglobin to overcome adult ß-globin gene deficiency is an effective therapeutic strategy to ameliorate human ß-hemoglobinopathies. Previous work has revealed that fetal γ-globin can be translationally induced via integrated stress signaling, but other studies have indicated that activating stress may eventually suppress γ-globin expression transcriptionally. The mechanism by which γ-globin expression is regulated at the translational level remains largely unknown, limiting our ability to determine whether activating stress is a realistic therapeutic option for these disorders. In this study, we performed a functional CRISPR screen targeting protein arginine methyltransferases (PRMTs) to look for changes in γ-globin expression in K562 cells. We not only discovered that several specific PRMTs may block γ-globin transcription, but also revealed PRMT1 as a unique family member that is able to suppress γ-globin synthesis specifically at the translational level. We further identified that a non-AUG uORF within the 5' untranslated region of γ-globin serves as a barrier for translation, which is bypassed upon PRMT1 deficiency. Finally, we found that this novel mechanism of γ-globin suppression could be pharmacologically targeted by the PRMT1 inhibitor, furamidine dihydrochloride. These data raise new questions regarding methyltransferase function and may offer a new therapeutic direction for ß-hemoglobinopathies.
Assuntos
Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , gama-Globinas/metabolismo , Hemoglobina Fetal/biossíntese , Hemoglobina Fetal/genética , Hemoglobina Fetal/farmacologia , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Células K562 , Metiltransferases/metabolismo , Biossíntese de Proteínas/genética , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Globinas beta/metabolismo , gama-Globinas/genéticaRESUMO
The underlying mechanism of transcriptional co-repressor ETO2 during early erythropoiesis and hemoglobin switching is unclear. We find that absence of ETO2 in mice interferes with down-regulation of PU.1 and GATA2 in the fetal liver, impeding a key step required for commitment to erythroid maturation. In human ß-globin transgenic Eto2 null mice and in human CD34+ erythroid progenitor cells with reduced ETO2, loss of ETO2 results in ineffective silencing of embryonic/fetal globin gene expression, impeding hemoglobin switching during erythroid differentiation. ETO2 occupancy genome-wide occurs virtually exclusively at LDB1-complex binding sites in enhancers and ETO2 loss leads to increased enhancer activity and expression of target genes. ETO2 recruits the NuRD nucleosome remodeling and deacetylation complex to regulate histone acetylation and nucleosome occupancy in the ß-globin locus control region and γ-globin gene. Loss of ETO2 elevates LDB1, MED1 and Pol II in the locus and facilitates fetal γ-globin/LCR looping and γ-globin transcription. Absence of the ETO2 hydrophobic heptad repeat region impairs ETO2-NuRD interaction and function in antagonizing γ-globin/LCR looping. Our results reveal a pivotal role for ETO2 in erythropoiesis and globin gene switching through its repressive role in the LDB1 complex, affecting the transcription factor and epigenetic environment and ultimately restructuring chromatin organization.
Assuntos
Cromatina/metabolismo , Eritropoese , Proteínas Repressoras/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Células Eritroides , Humanos , Células K562 , Proteínas com Domínio LIM/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Camundongos Knockout , Fatores de Transcrição/metabolismo , gama-Globinas/metabolismoRESUMO
Hydroxyurea (HU) is an effective drug to increase fetal γ-globin gene (Hb F) expression, replacing the missing adult ß-globin gene. The mechanism of Hb F induction by HU and improvement in clinical symptoms are still poorly understood. The current study aimed to improve the molecular understanding of drug-induced alterations and reveals genes related to HU treatment responsiveness in ß-thalassemia (ß-thal). We analyzed the GSE109186 dataset using system biology and weighted gene coexpression network analysis (WGCNA) to identify and quantify gene expression changes reflected in the HU-treated human erythroblastic leukemia cells. The K562 cell line was treated in 50, 100, and 150 µM concentrations of HU for 24, 48, and 72 hours with three replications. The alteration of CA1, LIN28B and Hb F gene expression in HU-treated cells was evaluated using the real-time polymerase chain (real-time PCR) technique. The results showed that LIN28B has an increase of 4.27-fold on the first day of HU-treatment in 50 µM (p < 0.01). The CA1 expression showed a decrease at all times and doses of treatment, and the most decrease happened in 48 hours and 50 µM (p < 0.04). Hb F also showed the highest increase in 100 µM after 24 hours of treatment (5.18-fold). In summary, the data suggest that alteration of LIN28B and CA1 gene expression is associated with γ-globin increasing in HU-treated cells.
Assuntos
Hemoglobina Fetal , Talassemia beta , Adulto , Hemoglobina Fetal/análise , Humanos , Hidroxiureia/farmacologia , Hidroxiureia/uso terapêutico , Proteínas de Ligação a RNA/uso terapêutico , Globinas beta/genética , Talassemia beta/genética , gama-Globinas/metabolismoRESUMO
The hemoglobin switch from fetal (HbF) to adult (HbA) has been studied intensively as an essential model for gene expression regulation, but also as a beneficial therapeutic approach for ß-hemoglobinopathies, towards the objective of reactivating HbF. The transcription factor LRF (Leukemia/lymphoma-related), encoded from the ZBTB7A gene has been implicated in fetal hemoglobin silencing, though has a wide range of functions that have not been fully clarified. We thus established the LRF/ZBTB7A-overexpressing and ZBTB7A-knockdown K562 (human erythroleukemia cell line) clones to assess fetal vs. adult hemoglobin production pre- and post-induction. Transgenic K562 clones were further developed and studied under the influence of epigenetic chromatin regulators, such as DNA methyl transferase 3 (DNMT3) and Histone Deacetylase 1 (HDAC1), to evaluate LRF's potential disturbance upon the aberrant epigenetic background and provide valuable information of the preferable epigenetic frame, in which LRF unfolds its action on the ß-type globin's expression. The ChIP-seq analysis demonstrated that LRF binds to γ-globin genes (HBG2/1) and apparently associates BCL11A for their silencing, but also during erythropoiesis induction, LRF binds the BGLT3 gene, promoting BGLT3-lncRNA production through the γ-δ intergenic region of ß-type globin's locus, triggering the transcriptional events from γ- to ß-globin switch. Our findings are supported by an up-to-date looping model, which highlights chromatin alterations during erythropoiesis at late stages of gestation, to establish an "open" chromatin conformation across the γ-δ intergenic region and accomplish ß-globin expression and hemoglobin switch.
Assuntos
RNA Longo não Codificante , Fatores de Transcrição , Adulto , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , DNA Intergênico/genética , DNA Intergênico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Hemoglobina A/genética , Hemoglobina A/metabolismo , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Globinas beta/genética , Globinas beta/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismoRESUMO
ß-Thalassemia is an autosomal recessive genetic disease caused by defects in the production of adult hemoglobin (HbA, α2ß2), which leads to an imbalance between α- and non-α-globin chains. Reactivation of γ-globin expression is an effective strategy to treat ß-thalassemia patients. Previously, it was demonstrated that hemoglobin subunit beta pseudogene 1 (HBBP1) is associated with elevated fetal hemoglobin (HbF, α2γ2) in ß-thalassemia patients. However, the mechanism underlying HBBP1-mediated HbF production is unknown. In this study, using bioinformatics analysis, we found that HBBP1 is involved in γ-globin production, and then preliminarily confirmed this finding in K562 cells. When HBBP1 was overexpressed, γ-globin expression was increased at the transcript and protein levels in HUDEP-2 cells. Next, we found that ETS transcription factor ELK1 (ELK1) binds to the HBBP1 proximal promoter and significantly promotes its activity. Moreover, the synthesis of γ-globin was enhanced when ELK1 was overexpressed in HUDEP-2 cells. Surprisingly, ELK1 also directly bound to and activated the γ-globin proximal promoter. Furthermore, we found that HBBP1 and ELK1 can interact with each other in HUDEP-2 cells. Collectively, these findings suggest that HBBP1 can induce γ-globin by enhancing ELK1 expression, providing some clues for γ-globin reactivation in ß-thalassemia.
Assuntos
Regulação da Expressão Gênica , RNA Longo não Codificante/genética , Talassemia beta/genética , Proteínas Elk-1 do Domínio ets/genética , gama-Globinas/genética , Diferenciação Celular/genética , Linhagem Celular , Células Precursoras Eritroides/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Células K562 , Interferência de RNA , Talassemia beta/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , gama-Globinas/metabolismoRESUMO
Preeclampsia (PE) is a pregnancy disorder associated with placental dysfunction and elevated fetal hemoglobin (HbF). Early in pregnancy the placenta harbors hematopoietic stem and progenitor cells (HSPCs) and is an extramedullary source of erythropoiesis. However, globin expression is not unique to erythroid cells and can be triggered by hypoxia. To investigate the role of the placenta in increasing globin levels previously reported in PE, flow cytometry, histological and immunostaining and in situ analyses were used on placenta samples and ex vivo explant cultures. Our results indicated that in PE pregnancies, placental HSPC homing and erythropoiesis were not affected. Non-erythroid alpha-globin mRNA and protein, but not gamma-globin, were detected in syncytiotrophoblasts and stroma of PE placenta samples. Similarly, alpha-globin protein and mRNA were upregulated in normal placenta explants cultured in hypoxia. The upregulation was independent of HIF1 and NRF2, the two main candidates of globin transcription in non-erythroid cells. Our study is the first to demonstrate alpha-globin mRNA expression in syncytiotrophoblasts in PE, induced by hypoxia. However, gamma-globin was only expressed in erythrocytes. We conclude that alpha-globin, but not HbF, is expressed in placental syncytiotrophoblasts in PE and may contribute to the pathology of the disease.
Assuntos
Hipóxia/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo , alfa-Globinas/metabolismo , Antígenos CD34/metabolismo , Biópsia , Células Eritroides/metabolismo , Eritropoese , Feminino , Citometria de Fluxo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hibridização In Situ , Fator 2 Relacionado a NF-E2/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Regulação para Cima , gama-Globinas/metabolismoRESUMO
In humans, fetal erythropoiesis takes place in the liver whereas adult erythropoiesis occurs in the bone marrow. Fetal and adult erythroid cells are not only produced at different sites, but are also distinguished by their respective transcriptional program. In particular, whereas fetal erythroid cells express γ-globin chains to produce fetal hemoglobin (HbF), adult cells express ß-globin chains to generate adult hemoglobin. Understanding the transcriptional regulation of the fetal-to-adult hemoglobin switch is clinically important as re-activation of HbF production in adult erythroid cells would represent a promising therapy for the hemoglobin disorders sickle cell disease and ß-thalassemia. We used RNA-sequencing to measure global gene and microRNA (miRNA) expression in human erythroblasts derived ex vivo from fetal liver (n = 12 donors) and bone marrow (n = 12 donors) hematopoietic stem/progenitor cells. We identified 7829 transcripts and 402 miRNA that were differentially expressed (false discovery rate <5%). The miRNA expression patterns were replicated in an independent collection of human erythroblasts using a different technology. By combining gene and miRNA expression data, we developed transcriptional networks which show substantial differences between fetal and adult human erythroblasts. Our analyses highlighted the miRNAs at the imprinted 14q32 locus in fetal erythroblasts and the let-7 miRNA family in adult erythroblasts as key regulators of stage-specific erythroid transcriptional programs. Altogether, our results provide a comprehensive resource to prioritize genes that may modify clinical severity in red blood cell (RBC) disorders, or genes that might be implicated in erythropoiesis by genome-wide association studies of RBC traits.
Assuntos
Eritropoese/genética , Hemoglobina Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , MicroRNAs/genética , Transcrição Gênica , Adulto , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Proliferação de Células , Cromossomos Humanos Par 14/química , Cromossomos Humanos Par 14/metabolismo , Eritroblastos/citologia , Eritroblastos/metabolismo , Hemoglobina Fetal/metabolismo , Feto , Ontologia Genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Globinas beta/genética , Globinas beta/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismoRESUMO
Induction of red blood cell (RBC) fetal hemoglobin (HbF; α2γ2) ameliorates the pathophysiology of sickle cell disease (SCD) by reducing the concentration of sickle hemoglobin (HbS; α2ßS2) to inhibit its polymerization. Hydroxyurea (HU), the only US Food and Drug Administration (FDA)-approved drug for SCD, acts in part by inducing HbF; however, it is not fully effective, reflecting the need for new therapies. Whole-exome sequence analysis of rare genetic variants in SCD patients identified FOXO3 as a candidate regulator of RBC HbF. We validated these genomic findings through loss- and gain-of-function studies in normal human CD34+ hematopoietic stem and progenitor cells induced to undergo erythroid differentiation. FOXO3 gene silencing reduced γ-globin RNA levels and HbF levels in erythroblasts, whereas overexpression of FOXO3 produced the opposite effect. Moreover, treatment of primary CD34+ cell-derived erythroid cultures with metformin, an FDA-approved drug known to enhance FOXO3 activity in nonerythroid cells, caused dose-related FOXO3-dependent increases in the percentage of HbF protein and the fraction of HbF-immunostaining cells (F cells). Combined HU and metformin treatment induced HbF additively and reversed the arrest in erythroid maturation caused by HU treatment alone. HbF induction by metformin in erythroid precursors was dependent on FOXO3 expression and did not alter expression of BCL11A, MYB, or KLF1. Collectively, our data implicate FOXO3 as a positive regulator of γ-globin expression and identify metformin as a potential therapeutic agent for SCD.
Assuntos
Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Hemoglobina Fetal/biossíntese , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Metformina/farmacologia , Anemia Falciforme/sangue , Anemia Falciforme/genética , Biomarcadores , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Criança , Pré-Escolar , Células Eritroides/citologia , Feminino , Hemoglobina Fetal/genética , Proteína Forkhead Box O3/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Modelos Biológicos , Transdução Genética , gama-Globinas/genética , gama-Globinas/metabolismoRESUMO
Patients with ß-thalassemia suffer from a lack or absence of the beta-globin chain of normal hemoglobin (Hb). Therefore, an increase in fetal Hb (HbF) levels could improve the clinical status of these patients. Downregulation of BCL11A, a key regulatory transcription factor, could ameliorate the clinical status of thalassemic patients by increasing HbF levels. miR-30a expression and its relationship with the BCL11A gene in erythroid precursors was explored in patients with ß-thalassemia. The relevance of miR-30a to clinical parameters was also investigated. We evaluated the expressions of miR-30a, BCL11A, and γ-globin genes by quantitative real-time PCR (qRT-PCR) on isolated erythroid precursors from peripheral blood samples of ß-thalassemia intermedia (TI) patients and in bone marrow samples from healthy individuals as controls. The correlation between miR-30a expression and clinical indices that included HbF levels, ferritin, and the frequency of blood transfusions were assessed. We observed increased expression of miR-30a in conjunction with decreased BCL11A expression and elevated γ-globin and HbF levels. Patients with elevated miR-30a expression had a higher percentage of HbF and a lower level of ferritin. In addition, we observed that overexpression of miR-30a in erythroid precursor cells led to reduced BCL11A expression and was associated with elevated γ-globin expression. Our findings showed the importance of miR-30a in BCL11A and HbF regulation, and in the clinical status of patients with ß-thalassemia.
Assuntos
MicroRNAs/genética , Proteínas Repressoras/metabolismo , Talassemia beta/genética , Adulto , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/fisiologia , Feminino , Hemoglobina Fetal/genética , Regulação da Expressão Gênica , Humanos , Masculino , MicroRNAs/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Globinas beta/genética , Talassemia beta/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismoRESUMO
Here we investigated in primary human erythroid tissues a downstream element of the heterochronic let-7 miRNA pathway, the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), for its potential to affect the hemoglobin profiles in human erythroblasts. Comparison of adult bone marrow to fetal liver lysates demonstrated developmental silencing in IGF2BP1. Erythroid-specific overexpression of IGF2BP1 caused a nearly complete and pancellular reversal of the adult pattern of hemoglobin expression toward a more fetal-like phenotype. The reprogramming of hemoglobin expression was achieved at the transcriptional level by increased gamma-globin combined with decreased beta-globin transcripts resulting in gamma-globin rising to 90% of total beta-like mRNA. Delta-globin mRNA was reduced to barely detectable levels. Alpha-globin levels were not significantly changed. Fetal hemoglobin achieved levels of 68.6 ± 3.9% in the IGF2BP1 overexpression samples compared with 5.0 ± 1.8% in donor matched transduction controls. In part, these changes were mediated by reduced protein expression of the transcription factor BCL11A. mRNA stability and polysome studies suggest IGF2BP1 mediates posttranscriptional loss of BCL11A. These results suggest a mechanism for chronoregulation of fetal and adult hemoglobin expression in humans.
Assuntos
Proteínas de Transporte/metabolismo , Eritroblastos/metabolismo , Hemoglobina Fetal/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Medula Óssea/metabolismo , Células HEK293 , Proteína HMGA2/metabolismo , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fígado/embriologia , Fenótipo , RNA Mensageiro/metabolismo , Proteínas Repressoras , Globinas beta/metabolismo , gama-Globinas/metabolismoRESUMO
As high fetal hemoglobin levels ameliorate the underlying pathophysiological defects in sickle cell anemia and beta (ß)-thalassemia, understanding the mechanisms that enforce silencing of fetal hemoglobin postnatally offers the promise of effective molecular therapy. Depletion of the Nucleosome Remodeling and Deacetylase complex member MBD2 causes a 10-20-fold increase in γ-globin gene expression in adult ß-globin locus yeast artificial chromosome transgenic mice. To determine the effect of MBD2 depletion in human erythroid cells, genome editing technology was utilized to knockout MBD2 in Human Umbilical cord Derived Erythroid Progenitor-2 cells resulting in γ/γ+ß mRNA levels of approximately 50% and approximately 40% fetal hemoglobin by high performance liquid chromatography. In contrast, MBD3 knockout had no appreciable effect on γ-globin expression. Knockdown of MBD2 in primary adult erythroid cells consistently increased γ/γ+ß mRNA ratios by approximately 10-fold resulting in approximately 30-40% γ/γ+ß mRNA levels and a corresponding increase in γ-globin protein. MBD2 exerts its repressive effects through recruitment of the chromatin remodeler CHD4 via a coiled-coil domain, and the histone deacetylase core complex via an intrinsically disordered region. Enforced expression of wild-type MBD2 in MBD2 knockout cells caused a 5-fold decrease in γ-globin mRNA while neither the coiled-coil mutant nor the intrinsically disordered region mutant MBD2 proteins had an inhibitory effect. Co-immunoprecipitation assays showed that the coiled-coil and intrinsically disorder region mutations disrupt complex formation by dissociating the CHD4 and the histone deacetylase core complex components, respectively. These results establish the MBD2 Nucleosome Remodeling and Deacetylase complex as a major silencer of fetal hemoglobin in human erythroid cells and point to the coiled-coil and intrinsically disordered region of MBD2 as potential therapeutic targets.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Eritroides/metabolismo , Hemoglobina Fetal/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Mutação , gama-Globinas/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adulto , Células Cultivadas , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Células Eritroides/citologia , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/antagonistas & inibidores , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATPRESUMO
The complex, frequently devastating, multi-organ pathophysiology of sickle cell disease has a single root cause: polymerization of deoxygenated sickle hemoglobin. A logical approach to disease modification is, therefore, to interdict this root cause. Ideally, such interdiction would utilize small molecules that are practical and accessible for worldwide application. Two types of such small molecule strategies are actively being evaluated in the clinic. The first strategy intends to shift red blood cell precursor hemoglobin manufacturing away from sickle hemoglobin and towards fetal hemoglobin, which inhibits sickle hemoglobin polymerization by a number of mechanisms. The second strategy intends to chemically modify sickle hemoglobin directly in order to inhibit its polymerization. Important lessons have been learnt from the pre-clinical and clinical evaluations to date. Open questions remain, but this review summarizes the valuable experience and knowledge already gained, which can guide ongoing and future efforts for molecular mechanism-based, practical and accessible disease modification of sickle cell disease.