Your browser doesn't support javascript.
loading
Modulation of the expression and activity of cyclooxygenases in normal and accelerated erythropoiesis.
Rocca, Bianca; Secchiero, Paola; Celeghini, Claudio; Ranelletti, Franco O; Ciabattoni, Giovanni; Maggiano, Nicola; Habib, Aida; Ricerca, Bianca M; Barbarotto, Elisa; Patrono, Carlo; Zauli, Giorgio.
Afiliação
  • Rocca B; Departments of Internal Medicine, Catholic University School of Medicine, 00168 Rome, Italy. b.rocca@tiscali.it
Exp Hematol ; 32(10): 925-34, 2004 Oct.
Article em En | MEDLINE | ID: mdl-15504548
ABSTRACT

OBJECTIVE:

The present study was aimed at characterizing the expression and activity of cyclooxygenase (COX) isoenzymes in erythropoiesis.

METHODS:

The expression and activity of cyclooxygenase (COX) and prostaglandin (PG) synthases were investigated in 1) erythroblasts developed in culture from human CD34(+) hematopoietic progenitors, 2) erythroblasts in bone marrow specimens, and 3) peripheral erythrocytes isolated from healthy donors and from patients with a high regeneration rate of erythrocytes.

RESULTS:

While COX-1 protein was observed at each stage of erythroblast development, COX-2 protein was induced at later stages through a p38/MAPK-dependent pathway. Both COX isoforms were also observed in mature erythroblasts of the bone marrow. Erythroblasts developed in culture synthesized significantly more PGE(2) than TXB(2) and indomethacin delayed erythroid maturation. COX-1 and COX-2 were also observed in erythrocytes by immunostainings, although COX expression was confined to a fraction of circulating erythrocytes. Peripheral erythrocytes synthesized low but detectable amounts of PGE(2) and TXB(2). Similarly to erythroblast progenitors, PGE(2) was the prevalent prostanoid released by erythrocytes. This biosynthetic capacity was significantly increased in erythrocytes from patients with accelerated erythropoiesis as compared to controls.

CONCLUSIONS:

Both COX isoforms are present and enzymatically active during human erythropoiesis, although with different kinetics, and COX-derived prostanoids may play a role in erythroid maturation. Furthermore, peripheral erythrocytes retain in part the capacity of expressing COX and synthesizing prostanoids, which may contribute to the hemostatic/thrombotic response to vascular injury in different diseases, including congenital hemolytic disorders.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica / Prostaglandina-Endoperóxido Sintases / Eritropoese Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Exp Hematol Ano de publicação: 2004 Tipo de documento: Article País de afiliação: Itália
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica / Prostaglandina-Endoperóxido Sintases / Eritropoese Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Exp Hematol Ano de publicação: 2004 Tipo de documento: Article País de afiliação: Itália