Studies on the mechanism of adenosylcobalamin-dependent ribonucleotide reduction by the use of analogs of the coenzyme.
J Biol Chem
; 250(22): 8774-9, 1975 Nov 25.
Article
em En
| MEDLINE
| ID: mdl-171265
A series of 17 analogs of 5'-deoxy-5'-adenosylcobalamin(adenosylcobalamin) have been synthesized with modifications in the base or ribose moiety of the nucleoside ligand. These analogs have been examined for their effects on reactions catalyzed by the ribonucleotide reductase of Lactobacillus leichmannii. All the analogs are inhibitors of ATP reduction in the presence of adenosylcobalamin as coenzyme, and hence all are bound to the catalytic site. Only the 3-beta-D-ribofuranosyladenine analog (isoadenosylcobalamin) showed substantial activity as a coenzyme in ATP reduction, giving a rate of 59% of that obtained with the adenosylcobalamin. Lesser rates of reduction were obtained with nebularyl-, 2'-deoxyadenosyl-, tubercidyl-, isopropylideneadenosyl-, L-adenosyl-, and ara-adenosylcobalamin, coenzyme activity decreasing in that order. Other analogs showed no significant coenzyme activity. The rate of hydrogen exchange into water from the 5'-methylene group of the nucleoside ligand appeared to parallel the coenzyme activity in those analogs examined, but only the four cobalamins with highest coenzyme activity (adenosyl, isoadenosyl, nebularyl, 2'-deoxyadenosyl) gave detectable amounts of "active coenzyme B12," THe rapidly formed paramagnetic intermediate of ribonucleotide reduction. The enzyme system produced the slowly formed paramagnetic species characterized by a doublet EPR spectrum only with adenosyl- and isoadenosylcobalamin. By contrast the enzymic degradation of analogs to cob(II)alamin and 5'-deoxynucleoside occurred not only with those analogs active as coenzymes and in the exchange reaction but also with a number of coenzymically inactive analogs, and the rate of degradation was unrelated to the rate of ribonucleotide reduction for those analogs with coenzyme activity.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Ribonucleotídeo Redutases
/
Cobamidas
Idioma:
En
Revista:
J Biol Chem
Ano de publicação:
1975
Tipo de documento:
Article