Your browser doesn't support javascript.
loading
Structure of the yeast histone H3-ASF1 interaction: implications for chaperone mechanism, species-specific interactions, and epigenetics.
Antczak, Andrew J; Tsubota, Toshiaki; Kaufman, Paul D; Berger, James M.
Afiliação
  • Antczak AJ; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. antczaka@berkeley.edu <antczaka@berkeley.edu>
BMC Struct Biol ; 6: 26, 2006 Dec 13.
Article em En | MEDLINE | ID: mdl-17166288
BACKGROUND: The histone H3/H4 chaperone Asf1 (anti-silencing function 1) is required for the establishment and maintenance of proper chromatin structure, as well as for genome stability in eukaryotes. Asf1 participates in both DNA replication-coupled (RC) and replication-independent (RI) histone deposition reactions in vitro and interacts with complexes responsible for both pathways in vivo. Asf1 is known to directly bind histone H3, however, high-resolution structural information about the geometry of this interaction was previously unknown. RESULTS: Here we report the structure of a histone/histone chaperone interaction. We have solved the 2.2 A crystal structure of the conserved N-terminal immunoglobulin fold domain of yeast Asf1 (residues 2-155) bound to the C-terminal helix of yeast histone H3 (residues 121-134). The structure defines a histone-binding patch on Asf1 consisting of both conserved and yeast-specific residues; mutation of these residues abrogates H3/H4 binding affinity. The geometry of the interaction indicates that Asf1 binds to histones H3/H4 in a manner that likely blocks sterically the H3/H3 interface of the nucleosomal four-helix bundle. CONCLUSION: These data clarify how Asf1 regulates histone stoichiometry to modulate epigenetic inheritance. The structure further suggests a physical model in which Asf1 contributes to interpretation of a "histone H3 barcode" for sorting H3 isoforms into different deposition pathways.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Chaperonas Moleculares / Epigênese Genética Limite: Animals / Humans Idioma: En Revista: BMC Struct Biol Assunto da revista: BIOLOGIA Ano de publicação: 2006 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Chaperonas Moleculares / Epigênese Genética Limite: Animals / Humans Idioma: En Revista: BMC Struct Biol Assunto da revista: BIOLOGIA Ano de publicação: 2006 Tipo de documento: Article