The inhibition of the epidermal growth factor (EGF) pathway enhances TGF-beta-induced apoptosis in rat hepatoma cells through inducing oxidative stress coincident with a change in the expression pattern of the NADPH oxidases (NOX) isoforms.
Biochim Biophys Acta
; 1793(2): 253-63, 2009 Feb.
Article
em En
| MEDLINE
| ID: mdl-18848961
Transforming growth factor-beta (TGF-beta) induces apoptosis in hepatocytes, through a mechanism mediated by reactive oxygen species (ROS) production. Numerous tumoral cells develop mechanisms to escape from the TGF-beta-induced tumor suppressor effects. In this work we show that in FaO rat hepatoma cells inhibition of the epidermal growth factor receptor (EGFR) with the tyrphostin AG1478 enhances TGF-beta-induced cell death, coincident with an elevated increase in ROS production and GSH depletion. These events correlate with down-regulation of genes involved in the maintenance of redox homeostasis, such as gamma-GCS and MnSOD, and elevated mitochondrial ROS. Nonetheless, not all the ROS proceed from the mitochondria. Emerging evidences indicate that ROS production by TGF-beta is also mediated by the NADPH oxidase (NOX) system. TGF-beta-treated FaO cells induce nox1 expression. However, the treatment with TGF-beta and AG1478 greatly enhanced the expression of another family member: nox4. NOX1 and NOX4 targeted knock-down by siRNA experiments suggest that they play opposite roles, because NOX1 knockdown increases caspase-3 activity and cell death, whilst NOX4 knock-down attenuates the apoptotic process. This attenuation correlates with maintenance of GSH and antioxidant enzymes levels. In summary, EGFR inhibition enhances apoptosis induced by TGF-beta in FaO rat hepatoma cells through an increased oxidative stress coincident with a change in the expression pattern of NOX enzymes.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fator de Crescimento Transformador beta
/
Apoptose
/
Carcinoma Hepatocelular
/
Estresse Oxidativo
/
NADPH Oxidases
/
Fator de Crescimento Epidérmico
/
Neoplasias Hepáticas
Limite:
Animals
Idioma:
En
Revista:
Biochim Biophys Acta
Ano de publicação:
2009
Tipo de documento:
Article
País de afiliação:
Espanha