Your browser doesn't support javascript.
loading
Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
Wu, Zhigang; Willing, Ben; Bjerketorp, Joakim; Jansson, Janet K; Hjort, Klas.
Afiliação
  • Wu Z; Microsystem Technology, Department of Engineering Science, Uppsala University, Box 534, The Angstrom Laboratory, 751 21, Uppsala, Sweden. Zhigang.Wu@angstrom.uu.se
Lab Chip ; 9(9): 1193-9, 2009 May 07.
Article em En | MEDLINE | ID: mdl-19370236
ABSTRACT
We developed a new approach to separate bacteria from human blood cells based on soft inertial force induced migration with flow defined curved and focused sample flow inside a microfluidic device. This approach relies on a combination of an asymmetrical sheath flow and proper channel geometry to generate a soft inertial force on the sample fluid in the curved and focused sample flow segment to deflect larger particles away while the smaller ones are kept on or near the original flow streamline. The curved and focused sample flow and inertial effect were visualized and verified using a fluorescent dye primed in the device. First the particle behaviour was studied in detail using 9.9 and 1.0 microm particles with a polymer-based prototype. The prototype device is compact with an active size of 3 mm(2). The soft inertial effect and deflection distance were proportional to the fluid Reynolds number (Re) and particle Reynolds number (Re(p)), respectively. We successfully demonstrated separation of bacteria (Escherichia coli) from human red blood cells at high cell concentrations (above 10(8)/mL), using a sample flow rate of up to 18 microL/min. This resulted in at least a 300-fold enrichment of bacteria at a wide range of flow rates with a controlled flow spreading. The separated cells were proven to be viable. Proteins from fractions before and after cell separation were analyzed by gel electrophoresis and staining to verify the removal of red blood cell proteins from the bacterial cell fraction. This novel microfluidic process is robust, reproducible, simple to perform, and has a high throughput compared to other cell sorting systems. Microfluidic systems based on these principles could easily be manufactured for clinical laboratory and biomedical applications.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Remoção de Componentes Sanguíneos / Candida albicans / Centrifugação / Desinfecção / Hemofiltração / Patógenos Transmitidos pelo Sangue / Técnicas Analíticas Microfluídicas / Sistemas Microeletromecânicos Tipo de estudo: Diagnostic_studies / Evaluation_studies Limite: Humans Idioma: En Revista: Lab Chip Assunto da revista: BIOTECNOLOGIA / QUIMICA Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Suécia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Remoção de Componentes Sanguíneos / Candida albicans / Centrifugação / Desinfecção / Hemofiltração / Patógenos Transmitidos pelo Sangue / Técnicas Analíticas Microfluídicas / Sistemas Microeletromecânicos Tipo de estudo: Diagnostic_studies / Evaluation_studies Limite: Humans Idioma: En Revista: Lab Chip Assunto da revista: BIOTECNOLOGIA / QUIMICA Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Suécia