Your browser doesn't support javascript.
loading
Spaceflight and modeled microgravity effects on microbial growth and virulence.
Rosenzweig, Jason A; Abogunde, Ohunene; Thomas, Kayama; Lawal, Abidat; Nguyen, Y-Uyen; Sodipe, Ayodotun; Jejelowo, Olufisayo.
Afiliação
  • Rosenzweig JA; Department of Biology Houston, Texas Southern University, Houston, TX, USA. rosenzweigja@tsu.edu
Appl Microbiol Biotechnol ; 85(4): 885-91, 2010 Jan.
Article em En | MEDLINE | ID: mdl-19847423
ABSTRACT
For unsuspecting bacteria, the difference between life and death depends upon efficient and specific responses to various stressors. Facing a much larger world, microbes are invariably challenged with ever-changing environments where temperature, pH, chemicals, and nutrients are in a constant state of flux. Only those that are able to rapidly reprogram themselves and express subsets of genes needed to overcome the stress will survive and outcompete neighboring microbes. Recently, low shear stress, emulating microgravity (MG) experienced in space, has been characterized in a number of microorganisms including fungi and prokaryotes ranging from harmless surrogate organisms to bona fide pathogens. Interestingly, MG appears to induce a plethora of effects ranging from enhanced pathogenicity in several Gram-negative enterics to enhanced biofilm formation. Furthermore, MG-exposed bacteria appeared better able to handle subsequent stressors including osmolarity, pH, temperature, and antimicrobial challenge while yeast exhibited aberrant budding post-MG-exposure. This review will focus on MG-induced alterations of virulence in various microbes with the emphasis placed on bacteria.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Voo Espacial / Bactérias / Ausência de Peso Limite: Animals / Humans Idioma: En Revista: Appl Microbiol Biotechnol Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Voo Espacial / Bactérias / Ausência de Peso Limite: Animals / Humans Idioma: En Revista: Appl Microbiol Biotechnol Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Estados Unidos