"Clocks" in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging.
Biochim Biophys Acta
; 1804(8): 1584-90, 2010 Aug.
Article
em En
| MEDLINE
| ID: mdl-19897060
SIR2 (silent information regulator 2) proteins, now called "sirtuins," are an evolutionarily conserved family of NAD-dependent protein deacetylases/ADP-ribosyltransferases. Sirtuins have recently attracted major attention in the field of aging research, and it has been demonstrated that SIR2 and its orthologs regulate aging and longevity in yeast, worms, and flies. In mammals, the SIR2 ortholog SIRT1 coordinates important metabolic responses to nutritional availability in multiple tissues. Most recently, it has been demonstrated that SIRT1 regulates the amplitude and the duration of circadian gene expression through the interaction and the deacetylation of key circadian clock regulators, such as BMAL1 and PER2. More strikingly, we and others have discovered a novel circadian clock feedback loop in which both the rate-limiting enzyme in mammalian NAD biosynthesis, nicotinamide phosphoribosyltransferase (NAMPT), and NAD levels display circadian oscillations and modulate CLOCK:BMAL1-mediated circadian transcriptional regulation through SIRT1, demonstrating a new function of NAD as a "metabolic oscillator." These findings reveal a novel system dynamics of a recently proposed systemic regulatory network regulated by NAMPT-mediated NAD biosynthesis and SIRT1, namely, the NAD World. In the light of this concept, a new connection between physiological rhythmicity, metabolism, and aging will be discussed.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Envelhecimento
/
Ritmo Circadiano
/
Sirtuínas
/
NAD
Tipo de estudo:
Prognostic_studies
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Biochim Biophys Acta
Ano de publicação:
2010
Tipo de documento:
Article
País de afiliação:
Estados Unidos