Your browser doesn't support javascript.
loading
Microarray analysis of spaceflown murine thymus tissue reveals changes in gene expression regulating stress and glucocorticoid receptors.
Lebsack, Ty W; Fa, Vuna; Woods, Chris C; Gruener, Raphael; Manziello, Ann M; Pecaut, Michael J; Gridley, Daila S; Stodieck, Louis S; Ferguson, Virginia L; Deluca, Dominick.
Afiliação
  • Lebsack TW; Department of Immunobiology, University of Arizona, Tucson, Arizona 85724, USA. lebsack@email.arizona.edu
J Cell Biochem ; 110(2): 372-81, 2010 May 15.
Article em En | MEDLINE | ID: mdl-20213684
ABSTRACT
The detrimental effects of spaceflight and simulated microgravity on the immune system have been extensively documented. We report here microarray gene expression analysis, in concert with quantitative RT-PCR, in young adult C57BL/6NTac mice at 8 weeks of age after exposure to spaceflight aboard the space shuttle (STS-118) for a period of 13 days. Upon conclusion of the mission, thymus lobes were extracted from space flown mice (FLT) as well as age- and sex-matched ground control mice similarly housed in animal enclosure modules (AEM). mRNA was extracted and an automated array analysis for gene expression was performed. Examination of the microarray data revealed 970 individual probes that had a 1.5-fold or greater change. When these data were averaged (n = 4), we identified 12 genes that were significantly up- or down-regulated by at least 1.5-fold after spaceflight (P < or = 0.05). The genes that significantly differed from the AEM controls and that were also confirmed via QRT-PCR were as follows Rbm3 (up-regulated) and Hsph110, Hsp90aa1, Cxcl10, Stip1, Fkbp4 (down-regulated). QRT-PCR confirmed the microarray results and demonstrated additional gene expression alteration in other T cell related genes, including Ctla-4, IFN-alpha2a (up-regulated) and CD44 (down-regulated). Together, these data demonstrate that spaceflight induces significant changes in the thymic mRNA expression of genes that regulate stress, glucocorticoid receptor metabolism, and T cell signaling activity. These data explain, in part, the reported systemic compromise of the immune system after exposure to the microgravity of space.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Voo Espacial / Estresse Fisiológico / Timo / Ausência de Peso / Receptores de Glucocorticoides / Regulação da Expressão Gênica Limite: Animals Idioma: En Revista: J Cell Biochem Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Voo Espacial / Estresse Fisiológico / Timo / Ausência de Peso / Receptores de Glucocorticoides / Regulação da Expressão Gênica Limite: Animals Idioma: En Revista: J Cell Biochem Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Estados Unidos