Your browser doesn't support javascript.
loading
An acid-loading chloride transport pathway in the intraerythrocytic malaria parasite, Plasmodium falciparum.
Henry, Roselani I; Cobbold, Simon A; Allen, Richard J W; Khan, Asif; Hayward, Rhys; Lehane, Adele M; Bray, Patrick G; Howitt, Susan M; Biagini, Giancarlo A; Saliba, Kevin J; Kirk, Kiaran.
Afiliação
  • Henry RI; Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.
J Biol Chem ; 285(24): 18615-26, 2010 Jun 11.
Article em En | MEDLINE | ID: mdl-20332090
ABSTRACT
The intraerythrocytic malaria parasite exerts tight control over its ionic composition. In this study, a combination of fluorescent ion indicators and (36)Cl(-) flux measurements was used to investigate the transport of Cl(-) and the Cl(-)-dependent transport of "H(+)-equivalents" in mature (trophozoite stage) parasites, isolated from their host erythrocytes. Removal of extracellular Cl(-), resulting in an outward [Cl(-)] gradient, gave rise to a cytosolic alkalinization (i.e. a net efflux of H(+)-equivalents). This was reversed on restoration of extracellular Cl(-). The flux of H(+)-equivalents was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and, when measured in ATP-depleted parasites, showed a pronounced dependence on the pH of the parasite cytosol; the flux was low at cytosolic pH values < 7.2 but increased steeply with cytosolic pH at values > 7.2. (36)Cl(-) influx measurements revealed the presence of a Cl(-) uptake mechanism with characteristics similar to those of the Cl(-)-dependent H(+)-equivalent flux. The intracellular concentration of Cl(-) in the parasite was estimated to be approximately 48 mm in situ. The data are consistent with the intraerythrocytic parasite having in its plasma membrane a 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive transporter that, under physiological conditions, imports Cl(-) together with H(+)-equivalents, resulting in an intracellular Cl(-) concentration well above that which would occur if Cl(-) ions were distributed passively in accordance with the parasite's large, inwardly negative membrane potential.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plasmodium falciparum / Cloretos / Eritrócitos Limite: Animals Idioma: En Revista: J Biol Chem Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plasmodium falciparum / Cloretos / Eritrócitos Limite: Animals Idioma: En Revista: J Biol Chem Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Austrália