Your browser doesn't support javascript.
loading
Prediction of Successful Memory Encoding from fMRI Data.
Balci, S K; Sabuncu, M R; Yoo, J; Ghosh, S S; Whitfield-Gabrieli, S; Gabrieli, J D E; Golland, P.
Afiliação
  • Balci SK; CSAIL, MIT, Cambridge, MA, USA.
Med Image Comput Comput Assist Interv ; 2008(11): 97-104, 2008 Sep 01.
Article em En | MEDLINE | ID: mdl-20401334
In this work, we explore the use of classification algorithms in predicting mental states from functional neuroimaging data. We train a linear support vector machine classifier to characterize spatial fMRI activation patterns. We employ a general linear model based feature extraction method and use the t-test for feature selection. We evaluate our method on a memory encoding task, using participants' subjective prediction about learning as a benchmark for our classifier. We show that the classifier achieves better than random predictions and the average accuracy is close to subject's own prediction performance. In addition, we validate our tool on a simple motor task where we demonstrate an average prediction accuracy of over 90%. Our experiments demonstrate that the classifier performance depends significantly on the complexity of the experimental design and the mental process of interest.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Med Image Comput Comput Assist Interv Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA Ano de publicação: 2008 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Med Image Comput Comput Assist Interv Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA Ano de publicação: 2008 Tipo de documento: Article País de afiliação: Estados Unidos