Prediction of Successful Memory Encoding from fMRI Data.
Med Image Comput Comput Assist Interv
; 2008(11): 97-104, 2008 Sep 01.
Article
em En
| MEDLINE
| ID: mdl-20401334
In this work, we explore the use of classification algorithms in predicting mental states from functional neuroimaging data. We train a linear support vector machine classifier to characterize spatial fMRI activation patterns. We employ a general linear model based feature extraction method and use the t-test for feature selection. We evaluate our method on a memory encoding task, using participants' subjective prediction about learning as a benchmark for our classifier. We show that the classifier achieves better than random predictions and the average accuracy is close to subject's own prediction performance. In addition, we validate our tool on a simple motor task where we demonstrate an average prediction accuracy of over 90%. Our experiments demonstrate that the classifier performance depends significantly on the complexity of the experimental design and the mental process of interest.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Med Image Comput Comput Assist Interv
Assunto da revista:
DIAGNOSTICO POR IMAGEM
/
INFORMATICA MEDICA
Ano de publicação:
2008
Tipo de documento:
Article
País de afiliação:
Estados Unidos