Your browser doesn't support javascript.
loading
Granzyme G is expressed in the two-cell stage mouse embryo and is required for the maternal-zygotic transition.
Tsai, Tung-Chou; Lin, William; Yang, Shang-Hsun; Cheng, Winston T K; Cheng, En-Hui; Lee, Maw-Sheng; Chong, Kowit-Yu; Chen, Chuan-Mu.
Afiliação
  • Tsai TC; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
BMC Dev Biol ; 10: 88, 2010 Aug 12.
Article em En | MEDLINE | ID: mdl-20704734
ABSTRACT

BACKGROUND:

Detailed knowledge of the molecular and cellular mechanisms that direct spatial and temporal gene expression in pre-implantation embryos is critical for understanding the control of the maternal-zygotic transition and cell differentiation in early embryonic development. In this study, twenty-three clones, expressed at different stages of early mouse development, were identified using differential display reverse transcription polymerase chain reaction (DDRT-PCR). One of these clones, which is expressed in 2-cell stage embryos at 48 hr post-hCG injection, shows a perfect sequence homology to the gene encoding the granzyme G protein. The granzyme family members are serine proteases that are present in the secretory granules of cytolytic T lymphocytes. However, the pattern of granzyme G expression and its function in early mouse embryos are entirely unknown.

RESULTS:

Upon the introduction of an antisense morpholino (2 mM) against granzyme G to knock-down endogenous gene function, all embryos were arrested at the 2- to 4-cell stages of egg cleavage, and the de novo synthesis of zygotic RNAs was decreased. The embryonic survival rate was dramatically decreased at the late 2-cell stage when serine protease-specific inhibitors, 0.1 mM 3,4-dichloroisocoumarin (3,4-DCI), and 2 mM phenyl methanesulphonyl fluoride (PMSF), were added to the in vitro embryonic culture medium. Survival was not affected by the addition of 0.5 mM EDTA, a metalloproteinase inhibitor.

CONCLUSION:

We characterized for the first time the expression and function of granzyme G during early stage embryogenesis. Our data suggest that granzyme G is an important factor in early mouse embryonic development and may play a novel role in the elimination of maternal proteins and the triggering of zygotic gene expression during the maternal-zygotic transition.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Zigoto / Regulação da Expressão Gênica no Desenvolvimento / Granzimas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: BMC Dev Biol Assunto da revista: EMBRIOLOGIA Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Taiwan

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Zigoto / Regulação da Expressão Gênica no Desenvolvimento / Granzimas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: BMC Dev Biol Assunto da revista: EMBRIOLOGIA Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Taiwan