Your browser doesn't support javascript.
loading
Superconductivity versus quantum criticality: what can we learn from heavy fermions?
Steglich, F; Arndt, J; Friedemann, S; Krellner, C; Tokiwa, Y; Westerkamp, T; Brando, M; Gegenwart, P; Geibel, C; Wirth, S; Stockert, O.
Afiliação
  • Steglich F; Max Planck Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, D-01187 Dresden, Germany. steglich@cpfs.mpg.de
J Phys Condens Matter ; 22(16): 164202, 2010 Apr 28.
Article em En | MEDLINE | ID: mdl-21386408
Two quantum critical point (QCP) scenarios are being discussed for different classes of antiferromagnetic (AF) heavy-fermion (HF) systems. In the itinerant one, where AF order is of the spin-density wave (SDW) type, the heavy 'composite' charge carriers keep their integrity at the QCP. The second one implies a breakdown of the Kondo effect and a disintegration of the composite fermions at the AF QCP. We discuss two isostructural compounds as exemplary materials for these two different scenarios: CeCu(2)Si(2) exhibits a three-dimensional (3D) SDW QCP and superconductivity, presumably mediated by SDW fluctuations, as strongly suggested by recent inelastic neutron scattering experiments. In Y bRh(2)Si(2), the AF QCP is found to coincide with a Kondo-destroying one. However, in the latter compound these two QCPs can be detached by varying the average unit-cell volume, e.g. through the application of chemical pressure, as realized by partial substitution of either Ir or Co for Rh. A comparison of CeCu(2)Si(2) and Y bRh(2)Si(2) indicates that the apparent differences in quantum critical behaviour go along with disparate behaviour concerning the (non-) existence of superconductivity (SC). No sign of SC could be detected in Y bRh(2)Si(2) down to mK temperatures. A potential correlation between the specific nature of the QCP and the occurrence of SC, however, requires detailed studies on further quantum critical HF superconductors, e.g. on ß-Y bAlB(4), UBe(13), CeCoIn(5) and CeRhIn(5).

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Condens Matter Assunto da revista: BIOFISICA Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Condens Matter Assunto da revista: BIOFISICA Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Alemanha