Your browser doesn't support javascript.
loading
Consistent metagenes from cancer expression profiles yield agent specific predictors of chemotherapy response.
Li, Qiyuan; Eklund, Aron C; Birkbak, Nicolai J; Desmedt, Christine; Haibe-Kains, Benjamin; Sotiriou, Christos; Symmans, W Fraser; Pusztai, Lajos; Brunak, Søren; Richardson, Andrea L; Szallasi, Zoltan.
Afiliação
  • Li Q; Center for Biological Sequence Analysis, Department of Systems Biolology, Technical University of Denmark, 2800 Lyngby, Denmark.
BMC Bioinformatics ; 12: 310, 2011 Jul 28.
Article em En | MEDLINE | ID: mdl-21798043
BACKGROUND: Genome scale expression profiling of human tumor samples is likely to yield improved cancer treatment decisions. However, identification of clinically predictive or prognostic classifiers can be challenging when a large number of genes are measured in a small number of tumors. RESULTS: We describe an unsupervised method to extract robust, consistent metagenes from multiple analogous data sets. We applied this method to expression profiles from five "double negative breast cancer" (DNBC) (not expressing ESR1 or HER2) cohorts and derived four metagenes. We assessed these metagenes in four similar but independent cohorts and found strong associations between three of the metagenes and agent-specific response to neoadjuvant therapy. Furthermore, we applied the method to ovarian and early stage lung cancer, two tumor types that lack reliable predictors of outcome, and found that the metagenes yield predictors of survival for both. CONCLUSIONS: These results suggest that the use of multiple data sets to derive potential biomarkers can filter out data set-specific noise and can increase the efficiency in identifying clinically accurate biomarkers.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Biomarcadores Tumorais / Neoplasias / Antineoplásicos Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Female / Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Dinamarca

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Biomarcadores Tumorais / Neoplasias / Antineoplásicos Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Female / Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Dinamarca