Your browser doesn't support javascript.
loading
Using gas chromatography/isotope ratio mass spectrometry to determine the fractionation factor for H2 production by hydrogenases.
Yang, Hui; Gandhi, Hasand; Shi, Liang; Kreuzer, Helen W; Ostrom, Nathaniel E; Hegg, Eric L.
Afiliação
  • Yang H; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA.
Rapid Commun Mass Spectrom ; 26(1): 61-8, 2012 Jan 15.
Article em En | MEDLINE | ID: mdl-22215579
ABSTRACT
Hydrogenases catalyze the reversible formation of H(2), and they are key enzymes in the biological cycling of H(2). H isotopes have the potential to be a very useful tool in quantifying hydrogen ion trafficking in biological H(2) production processes, but there are several obstacles that have thus far limited the application of this tool. Here, we describe a new method that overcomes some of these barriers and is specifically designed to measure isotopic fractionation during enzyme-catalyzed H(2) evolution. A key feature of this technique is that purified hydrogenases are employed, allowing precise control over the reaction conditions and therefore a high level of precision. In addition, a custom-designed high-throughput gas chromatograph/isotope ratio mass spectrometer is employed to measure the isotope ratio of the H(2). Using our new approach, we determined that the fractionation factor for H(2) production by the [NiFe]-hydrogenase from Desulfovibrio fructosovorans is 0.273 ± 0.006. This result indicates that, as expected, protons are highly favored over deuterium ions during H(2) evolution. Potential applications of this newly developed method are discussed.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogênio / Hidrogenase / Cromatografia Gasosa-Espectrometria de Massas Idioma: En Revista: Rapid Commun Mass Spectrom Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogênio / Hidrogenase / Cromatografia Gasosa-Espectrometria de Massas Idioma: En Revista: Rapid Commun Mass Spectrom Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos