Your browser doesn't support javascript.
loading
Macromolecule-assisted de novo protein folding.
Choi, Seong Il; Son, Ahyun; Lim, Keo-Heun; Jeong, Hotcherl; Seong, Baik L.
Afiliação
  • Choi SI; Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea.
  • Son A; Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea.
  • Lim KH; Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea.
  • Jeong H; Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea.
  • Seong BL; Vismer Co., Ltd., Ansan, Kyeonggi-do 426-791, Korea.
Int J Mol Sci ; 13(8): 10368-10386, 2012.
Article em En | MEDLINE | ID: mdl-22949867
ABSTRACT
In the processes of protein synthesis and folding, newly synthesized polypeptides are tightly connected to the macromolecules, such as ribosomes, lipid bilayers, or cotranslationally folded domains in multidomain proteins, representing a hallmark of de novo protein folding environments in vivo. Such linkage effects on the aggregation of endogenous polypeptides have been largely neglected, although all these macromolecules have been known to effectively and robustly solubilize their linked heterologous proteins in fusion or display technology. Thus, their roles in the aggregation of linked endogenous polypeptides need to be elucidated and incorporated into the mechanisms of de novo protein folding in vivo. In the classic hydrophobic interaction-based stabilizing mechanism underlying the molecular chaperone-assisted protein folding, it has been assumed that the macromolecules connected through a simple linkage without hydrophobic interactions and conformational changes would make no effect on the aggregation of their linked polypeptide chains. However, an increasing line of evidence indicates that the intrinsic properties of soluble macromolecules, especially their surface charges and excluded volume, could be important and universal factors for stabilizing their linked polypeptides against aggregation. Taken together, these macromolecules could act as folding helpers by keeping their linked nascent chains in a folding-competent state. The folding assistance provided by these macromolecules in the linkage context would give new insights into de novo protein folding inside the cell.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Dobramento de Proteína / Substâncias Macromoleculares Limite: Animals / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Dobramento de Proteína / Substâncias Macromoleculares Limite: Animals / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2012 Tipo de documento: Article