Your browser doesn't support javascript.
loading
Modeling zero-inflated count data using a covariate-dependent random effect model.
Wong, Kin-Yau; Lam, K F.
Afiliação
  • Wong KY; Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong.
Stat Med ; 32(8): 1283-93, 2013 Apr 15.
Article em En | MEDLINE | ID: mdl-22987667
In various medical related researches, excessive zeros, which make the standard Poisson regression model inadequate, often exist in count data. We proposed a covariate-dependent random effect model to accommodate the excess zeros and the heterogeneity in the population simultaneously. This work is motivated by a data set from a survey on the dental health status of Hong Kong preschool children where the response variable is the number of decayed, missing, or filled teeth. The random effect has a sound biological interpretation as the overall oral health status or other personal qualities of an individual child that is unobserved and unable to be quantified easily. The overall measure of oral health status, responsible for accommodating the excessive zeros and also the heterogeneity among the children, is covariate dependent. This covariate-dependent random effect model allows one to distinguish whether a potential covariate has an effect on the conceived overall oral health condition of the children, that is, the random effect, or has a direct effect on the magnitude of the counts, or both. We proposed a multiple imputation approach for estimation of the parameters. We discussed the choice of the imputation size. We evaluated the performance of the proposed estimation method through simulation studies, and we applied the model and method to the dental data.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Interpretação Estatística de Dados / Modelos Estatísticos Tipo de estudo: Clinical_trials / Prognostic_studies / Risk_factors_studies / Systematic_reviews Limite: Child, preschool / Humans País/Região como assunto: Asia Idioma: En Revista: Stat Med Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Hong Kong

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Interpretação Estatística de Dados / Modelos Estatísticos Tipo de estudo: Clinical_trials / Prognostic_studies / Risk_factors_studies / Systematic_reviews Limite: Child, preschool / Humans País/Região como assunto: Asia Idioma: En Revista: Stat Med Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Hong Kong