PICARA, an analytical pipeline providing probabilistic inference about a priori candidates genes underlying genome-wide association QTL in plants.
PLoS One
; 7(11): e46596, 2012.
Article
em En
| MEDLINE
| ID: mdl-23144785
PICARA is an analytical pipeline designed to systematically summarize observed SNP/trait associations identified by genome wide association studies (GWAS) and to identify candidate genes involved in the regulation of complex trait variation. The pipeline provides probabilistic inference about a priori candidate genes using integrated information derived from genome-wide association signals, gene homology, and curated gene sets embedded in pathway descriptions. In this paper, we demonstrate the performance of PICARA using data for flowering time variation in maize - a key trait for geographical and seasonal adaption of plants. Among 406 curated flowering time-related genes from Arabidopsis, we identify 61 orthologs in maize that are significantly enriched for GWAS SNP signals, including key regulators such as FT (Flowering Locus T) and GI (GIGANTEA), and genes centered in the Arabidopsis circadian pathway, including TOC1 (Timing of CAB Expression 1) and LHY (Late Elongated Hypocotyl). In addition, we discover a regulatory feature that is characteristic of these a priori flowering time candidates in maize. This new probabilistic analytical pipeline helps researchers infer the functional significance of candidate genes associated with complex traits and helps guide future experiments by providing statistical support for gene candidates based on the integration of heterogeneous biological information.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Arabidopsis
/
Proteínas de Arabidopsis
/
Locos de Características Quantitativas
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
PLoS One
Assunto da revista:
CIENCIA
/
MEDICINA
Ano de publicação:
2012
Tipo de documento:
Article
País de afiliação:
Estados Unidos