Your browser doesn't support javascript.
loading
Three-band, 1.9-µm axial resolution full-field optical coherence microscopy over a 530-1700 nm wavelength range using a single camera.
Opt Lett ; 39(6): 1374-7, 2014 Mar 15.
Article em En | MEDLINE | ID: mdl-24690791
Full-field optical coherence microscopy is an established optical technology based on low-coherence interference microscopy for high-resolution imaging of semitransparent samples. In this Letter, we demonstrate an extension of the technique using a visible to short-wavelength infrared camera and a halogen lamp to image in three distinct bands centered at 635, 870, and 1170 nm. Reflective microscope objectives are employed to minimize chromatic aberrations of the imaging system operating over a spectral range extending from 530 to 1700 nm. Constant 1.9-µm axial resolution (measured in air) is achieved in each of the three bands. A dynamic dispersion compensation system is set up to preserve the axial resolution when the imaging depth is varied. The images can be analyzed in the conventional RGB color channels representation to generate three-dimensional images with enhanced contrast. The capability of the system is illustrated by imaging different samples.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Lett Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Lett Ano de publicação: 2014 Tipo de documento: Article