Your browser doesn't support javascript.
loading
Electroanatomic mapping and late gadolinium enhancement MRI in a genetic model of arrhythmogenic atrial cardiomyopathy.
Disertori, Marcello; Masè, Michela; Marini, Massimiliano; Mazzola, Silvia; Cristoforetti, Alessandro; Del Greco, Maurizio; Kottkamp, Hans; Arbustini, Eloisa; Ravelli, Flavia.
Afiliação
  • Disertori M; Department of Cardiology, Santa Chiara Hospital, Trento, Italy.
  • Masè M; Healthcare Research and Innovation Program, PAT-FBK, Trento, Italy.
  • Marini M; Department of Physics, University of Trento, Povo, Trento, Italy.
  • Mazzola S; Department of Cardiology, Santa Chiara Hospital, Trento, Italy.
  • Cristoforetti A; Department of Cardiology, Santa Chiara Hospital, Trento, Italy.
  • Del Greco M; Department of Physics, University of Trento, Povo, Trento, Italy.
  • Kottkamp H; Department of Cardiology, Santa Chiara Hospital, Trento, Italy.
  • Arbustini E; Department of Electrophysiology, Hirslanden Hospital, Zurich, Switzerland.
  • Ravelli F; Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, Policlinico San Matteo, Pavia, Italy.
J Cardiovasc Electrophysiol ; 25(9): 964-970, 2014 Sep.
Article em En | MEDLINE | ID: mdl-24758425
ABSTRACT

INTRODUCTION:

Although atrial arrhythmias may have genetic causes, very few data are available on evaluation of the arrhythmic substrate in genetic atrial diseases in humans. In this study, we evaluate the nature and evolution of the atrial arrhythmic substrate in a genetic atrial cardiomyopathy. METHODS AND

RESULTS:

Repeated electroanatomic mapping and tomographic evaluations were used to investigate the evolving arrhythmic substrate in 5 patients with isolated arrhythmogenic atrial cardiomyopathy, caused by Natriuretic Peptide Precursor A (NPPA) gene mutation. Atrial fibrosis was assessed using late gadolinium enhancement magnetic resonance imaging (LGE-MRI). The substrate of atrial tachycardia (AT) and atrial fibrillation (AF) was biatrial dilatation with patchy areas of low voltage and atrial wall scarring (in the right atrium 68.5% ± 6.0% and 22.2% ± 10.2%, respectively). The evolution of the arrhythmic patterns to sinus node disease with atrial standstill (AS) was associated with giant atria with extensive low voltage and atrial scarring areas (in the right atrium 99.5% ± 0.7% and 57.5% ± 33.2%, respectively). LGE-MRI-proven biatrial fibrosis (Utah stage IV) was associated with AS. Atrial conduction was slow and heterogeneous, with lines of conduction blocks. The progressive extension and spatial distribution of the scarring/fibrosis were strictly associated with the different types of arrhythmias.

CONCLUSION:

The evolution of the amount and distribution of atrial scarring/fibrosis constitutes the structural substrate for the different types of atrial arrhythmias in a pure genetic model of arrhythmogenic atrial cardiomyopathy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arritmias Cardíacas / Imageamento por Ressonância Magnética / Átrios do Coração Limite: Adult / Female / Humans / Male Idioma: En Revista: J Cardiovasc Electrophysiol Assunto da revista: ANGIOLOGIA / CARDIOLOGIA / FISIOLOGIA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arritmias Cardíacas / Imageamento por Ressonância Magnética / Átrios do Coração Limite: Adult / Female / Humans / Male Idioma: En Revista: J Cardiovasc Electrophysiol Assunto da revista: ANGIOLOGIA / CARDIOLOGIA / FISIOLOGIA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Itália