Your browser doesn't support javascript.
loading
Novel mechanisms of Na+ retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK.
Davies, Matthew; Fraser, Scott A; Galic, Sandra; Choy, Suet-Wan; Katerelos, Marina; Gleich, Kurt; Kemp, Bruce E; Mount, Peter F; Power, David A.
Afiliação
  • Davies M; Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia; Department of Nephrology, University of Melbourne, Heidelberg, Victoria, Australia; Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia; and.
  • Fraser SA; Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia;
  • Galic S; St. Vincent's Institute, Fitzroy, Victoria, Australia.
  • Choy SW; Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia; Department of Nephrology, University of Melbourne, Heidelberg, Victoria, Australia; Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia; and.
  • Katerelos M; Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia;
  • Gleich K; Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia;
  • Kemp BE; St. Vincent's Institute, Fitzroy, Victoria, Australia.
  • Mount PF; Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia; Department of Nephrology, University of Melbourne, Heidelberg, Victoria, Australia; Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia; and.
  • Power DA; Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia; Department of Nephrology, University of Melbourne, Heidelberg, Victoria, Australia; Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia; and David.Power@austin
Am J Physiol Renal Physiol ; 307(1): F96-F106, 2014 Jul 01.
Article em En | MEDLINE | ID: mdl-24808538
ABSTRACT
Enhanced tubular reabsorption of salt is important in the pathogenesis of obesity-related hypertension, but the mechanisms remain poorly defined. To identify changes in the regulation of salt transporters in the kidney, C57BL/6 mice were fed a 40% fat diet [high-fat diet (HFD)] or a 12% fat diet (control diet) for 14 wk. Compared with control diet-fed mice, HFD-fed mice had significantly greater elevations in weight, blood pressure, and serum insulin and leptin levels. When we examined Na(+) transporter expression, Na(+)-K(+)-2Cl(-) cotransporter (NKCC2) was unchanged in whole kidney and reduced in the cortex, Na(+)-Cl(-) cotransporter (NCC) and α-epithelial Na(+) channel (ENaC) and γ-ENaC were unchanged, and ß-ENaC was reduced. Phosphorylation of NCC was unaltered. Activating phosphorylation of NKCC2 at S126 was increased 2.5-fold. Activation of STE-20/SPS1-related proline-alanine-rich protein kinase (SPAK)/oxidative stress responsive 1 kinase (OSR1) was increased in kidneys from HFD-fed mice, and enhanced phosphorylation of NKCC2 at T96/T101 was evident in the cortex. Increased activity of NKCC2 in vivo was confirmed with diuretic experiments. HFD-fed mice had reduced activating phosphorylation of AMP-activated protein kinase (AMPK) in the renal cortex. In vitro, activation of AMPK led to a reduction in phospho-SPAK/phospho-OSR1 in AMPK(+/+) murine embryonic fibroblasts (MEFs), but no effect was seen in AMPK(-/-) MEFs, indicating an AMPK-mediated effect. Activation of the with no lysine kinase/SPAK/OSR1 pathway with low-NaCl solution invoked a greater elevation in phospho-SPAK/phospho-OSR1 in AMPK(-/-) MEFs than in AMPK(+/+) MEFs, consistent with a negative regulatory effect of AMPK on SPAK/OSR1 phosphorylation. In conclusion, this study identifies increased phosphorylation of NKCC2 on S126 as a hitherto-unrecognized mediator of enhanced Na(+) reabsorption in obesity and identifies a new role for AMPK in regulating the activity of SPAK/OSR1.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Serina-Treonina Quinases / Cloreto de Sódio na Dieta / Proteínas Quinases Ativadas por AMP / Membro 1 da Família 12 de Carreador de Soluto / Obesidade Limite: Animals Idioma: En Revista: Am J Physiol Renal Physiol Assunto da revista: FISIOLOGIA / NEFROLOGIA Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Serina-Treonina Quinases / Cloreto de Sódio na Dieta / Proteínas Quinases Ativadas por AMP / Membro 1 da Família 12 de Carreador de Soluto / Obesidade Limite: Animals Idioma: En Revista: Am J Physiol Renal Physiol Assunto da revista: FISIOLOGIA / NEFROLOGIA Ano de publicação: 2014 Tipo de documento: Article