Formation of octameric methylaluminoxanes by hydrolysis of trimethylaluminum and the mechanisms of catalyst activation in single-site α-olefin polymerization catalysis.
Chemphyschem
; 15(13): 2732-42, 2014 Sep 15.
Article
em En
| MEDLINE
| ID: mdl-24930450
Hydrolysis of trimethylaluminum (TMA) leads to the formation of methylaluminoxanes (MAO) of general formula (MeAlO)n (AlMe3)m. The thermodynamically favored pathway of MAO formation is followed up to n=8, showing the major impact of associated TMA on the structural characteristics of the MAOs. The MAOs bind up to five TMA molecules, thereby inducing transition from cages into rings and sheets. Zirconocene catalyst activation studies using model MAO co-catalysts show the decisive role of the associated TMA in forming the catalytically active sites. Catalyst activation can take place either by Lewis-acidic abstraction of an alkyl or halide ligand from the precatalyst or by reaction of the precatalyst with an MAO-derived AlMe2(+) cation. Thermodynamics suggest that activation through AlMe2(+) transfer is the dominant mechanism because sites that are able to release AlMe2(+) are more abundant than Lewis-acidic sites. The model catalyst system is demonstrated to polymerize ethene.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Chemphyschem
Assunto da revista:
BIOFISICA
/
QUIMICA
Ano de publicação:
2014
Tipo de documento:
Article