Your browser doesn't support javascript.
loading
Molecular dynamics simulation of self-diffusion processes in titanium in bulk material, on grain junctions and on surface.
Sushko, Gennady B; Verkhovtsev, Alexey V; Yakubovich, Alexander V; Schramm, Stefan; Solov'yov, Andrey V.
Afiliação
  • Sushko GB; Frankfurt Institute for Advanced Studies, Goethe-Universität Frankfurt am Main , Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany.
J Phys Chem A ; 118(33): 6685-91, 2014 Aug 21.
Article em En | MEDLINE | ID: mdl-24956031
The process of self-diffusion of titanium atoms in a bulk material, on grain junctions and on surface is explored numerically in a broad temperature range by means of classical molecular dynamics simulation. The analysis is carried out for a nanoscale cylindrical sample consisting of three adjacent sectors and various junctions between nanocrystals. The calculated diffusion coefficient varies by several orders of magnitude for different regions of the sample. The calculated values of the bulk diffusion coefficient correspond reasonably well to the experimental data obtained for solid and molten states of titanium. Investigation of diffusion in the nanocrystalline titanium is of a significant importance because of its numerous technological applications. This paper aims to reduce the lack of data on diffusion in titanium and describe the processes occurring in bulk, at different interfaces and on surface of the crystalline titanium.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Chem A Assunto da revista: QUIMICA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Chem A Assunto da revista: QUIMICA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Alemanha