Your browser doesn't support javascript.
loading
Differential effects of prenatal stress in female 5-HTT-deficient mice: towards molecular mechanisms of resilience.
Jakob, Sissi; Schraut, Karla-Gerlinde; Schmitt, Angelika G; Scholz, Claus-Jürgen; Ortega, Gabriela; Steinbusch, Harry W; Lesch, Klaus-Peter; van den Hove, Daniel L A.
Afiliação
  • Jakob S; Department of Neuroscience, School for Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, The Netherlands.
Dev Neurosci ; 36(6): 454-64, 2014.
Article em En | MEDLINE | ID: mdl-25195605
Prenatal stress (PS) exposure is known to increase the risk of developing emotional disorders like major depression in later life. However, some individuals do not succumb to adversity following developmental stress exposure, a phenomenon referred to as resilience. To date, the molecular mechanisms explaining why some subjects are vulnerable and others more resilient to PS are far from understood. Recently, we have shown that the serotonin transporter (5-HTT) gene may play a modulating role in rendering individuals susceptible or resilient to PS. However, it is not clear which molecular players are mediating the interaction between PS and the 5-Htt genotype in the context of vulnerability and resilience to PS. For this purpose, we performed a microarray study with the help of Affymetrix GeneChip® Mouse Genome 430 2.0 Array, in which we separated wild-type and heterozygous 5-Htt-deficient (5-Htt+/-) PS offspring into susceptible and resilient offspring according to their performance in the forced swim test. Performance-oriented LIMMA analysis on the mRNA expression microarray data was followed by subsequent Spearman's correlation analysis linking the individual qRT-PCR mRNA expression data to various anxiety- and depression-related behavioral and neuroendocrine measures. Results indicate that, amongst others, Fos-induced growth factor (Figf), galanin receptor 3 (Galr3), growth hormone (Gh) and prolactin (Prl) were differentially expressed specifically in resilient offspring when compared to controls, and that the hippocampal expression of these genes showed several strong correlations with various measures of the hypothalamus-pituitary-adrenal axis (re)activity. In conclusion, there seems to be an intricate interplay between the expression of Figf, Galr3, Gh and Prl and neuroendocrine regulation, which may be critical in mediating resilience to PS exposure. More insight into the exact role of these molecular players may significantly enhance the development of new treatment strategies for stress-related emotional disorders.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Efeitos Tardios da Exposição Pré-Natal / Estresse Psicológico / Comportamento Animal / Cortisona / Predisposição Genética para Doença / Proteínas da Membrana Plasmática de Transporte de Serotonina / Hipocampo Tipo de estudo: Prognostic_studies Limite: Animals / Pregnancy Idioma: En Revista: Dev Neurosci Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Efeitos Tardios da Exposição Pré-Natal / Estresse Psicológico / Comportamento Animal / Cortisona / Predisposição Genética para Doença / Proteínas da Membrana Plasmática de Transporte de Serotonina / Hipocampo Tipo de estudo: Prognostic_studies Limite: Animals / Pregnancy Idioma: En Revista: Dev Neurosci Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Holanda