Your browser doesn't support javascript.
loading
ANISOTROPIC FUNCTION ESTIMATION USING MULTI-BANDWIDTH GAUSSIAN PROCESSES.
Bhattacharya, Anirban; Pati, Debdeep; Dunson, David.
Afiliação
  • Bhattacharya A; Duke University.
  • Pati D; Florida State University.
  • Dunson D; Duke University.
Ann Stat ; 42(1): 352-381, 2014 Feb 01.
Article em En | MEDLINE | ID: mdl-25288827
In nonparametric regression problems involving multiple predictors, there is typically interest in estimating an anisotropic multivariate regression surface in the important predictors while discarding the unimportant ones. Our focus is on defining a Bayesian procedure that leads to the minimax optimal rate of posterior contraction (up to a log factor) adapting to the unknown dimension and anisotropic smoothness of the true surface. We propose such an approach based on a Gaussian process prior with dimension-specific scalings, which are assigned carefully-chosen hyperpriors. We additionally show that using a homogenous Gaussian process with a single bandwidth leads to a sub-optimal rate in anisotropic cases.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Ann Stat Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Ann Stat Ano de publicação: 2014 Tipo de documento: Article