Your browser doesn't support javascript.
loading
Electroporation transiently decreases GJB2 (connexin 26) expression in B16/BL6 melanoma cell line.
Rangel, Marcelo Monte Mór; Chaible, Lucas Martins; Nagamine, Marcia Kazumi; Mennecier, Gregory; Cogliati, Bruno; de Oliveira, Krishna Duro; Fukumasu, Heidge; Sinhorini, Idércio Luiz; Mir, Lluis Maria; Dagli, Maria Lúcia Zaidan.
Afiliação
  • Rangel MM; Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, CEP 05508-900, Brazil.
J Membr Biol ; 248(1): 47-52, 2015 Feb.
Article em En | MEDLINE | ID: mdl-25298064
ABSTRACT
Connexins are proteins that form gap junctions. Perturbations in the cell membrane reportedly promote changes in the expression profile of connexins. Electroporation promotes destabilization by applying electrical pulses, and this procedure is used in electrochemotherapy and gene therapy, among others. This in vitro work aimed to study the interference of electroporation on the expression profile of GJB2 (Cx26 gene) and Connexin 26 in melanoma cell line B16/BL6. The techniques of immunocytochemistry, Western blot, and real-time PCR were used. After electroporation, cells showed a transient decrease in GJB2 mRNA. The immunostaining of Cx26 showed no noticeable change after electroporation at different time points. However, Western blot showed a significant reduction in Cx26 30 min after electroporation. Our results showed that electroporation interferes transiently in the expression of Connexin 26 in melanoma and are consistent with the idea that electroporation is a process of intense stress that promotes cell homeostatic imbalance and results in disruption of cell physiological processes such as transcription and translation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Melanoma Experimental / Eletroporação / Conexinas Limite: Animals / Humans Idioma: En Revista: J Membr Biol Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Melanoma Experimental / Eletroporação / Conexinas Limite: Animals / Humans Idioma: En Revista: J Membr Biol Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Brasil