Your browser doesn't support javascript.
loading
Phosphorylation of threonine 3 on histone H3 by haspin kinase is required for meiosis I in mouse oocytes.
Nguyen, Alexandra L; Gentilello, Amanda S; Balboula, Ahmed Z; Shrivastava, Vibha; Ohring, Jacob; Schindler, Karen.
Afiliação
  • Nguyen AL; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
  • Gentilello AS; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
  • Balboula AZ; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
  • Shrivastava V; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
  • Ohring J; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
  • Schindler K; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA schindler@biology.rutgers.edu.
J Cell Sci ; 127(Pt 23): 5066-78, 2014 Dec 01.
Article em En | MEDLINE | ID: mdl-25315835
Meiosis I (MI), the division that generates haploids, is prone to errors that lead to aneuploidy in females. Haspin is a kinase that phosphorylates histone H3 on threonine 3, thereby recruiting Aurora kinase B (AURKB) and the chromosomal passenger complex (CPC) to kinetochores to regulate mitosis. Haspin and AURKC, an AURKB homolog, are enriched in germ cells, yet their significance in regulating MI is not fully understood. Using inhibitors and overexpression approaches, we show a role for haspin during MI in mouse oocytes. Haspin-perturbed oocytes display abnormalities in chromosome morphology and alignment, improper kinetochore-microtubule attachments at metaphase I and aneuploidy at metaphase II. Unlike in mitosis, kinetochore localization remained intact, whereas the distribution of the CPC along chromosomes was absent. The meiotic defects following haspin inhibition were similar to those observed in oocytes where AURKC was inhibited, suggesting that the correction of microtubule attachments during MI requires AURKC along chromosome arms rather than at kinetochores. Our data implicate haspin as a regulator of the CPC and chromosome segregation during MI, while highlighting important differences in how chromosome segregation is regulated between MI and mitosis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oócitos / Histonas / Proteínas Serina-Treonina Quinases / Peptídeos e Proteínas de Sinalização Intracelular / Prófase Meiótica I Limite: Animals Idioma: En Revista: J Cell Sci Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oócitos / Histonas / Proteínas Serina-Treonina Quinases / Peptídeos e Proteínas de Sinalização Intracelular / Prófase Meiótica I Limite: Animals Idioma: En Revista: J Cell Sci Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos