Structure of a pantothenate transporter and implications for ECF module sharing and energy coupling of group II ECF transporters.
Proc Natl Acad Sci U S A
; 111(52): 18560-5, 2014 Dec 30.
Article
em En
| MEDLINE
| ID: mdl-25512487
Energy-coupling factor (ECF) transporters are a unique group of ATP-binding cassette (ABC) transporters responsible for micronutrient uptake from the environment. Each ECF transporter is composed of an S component (or EcfS protein) and T/A/A' components (or EcfT/A/A' proteins; ECF module). Among the group II ECF transporters, several EcfS proteins share one ECF module; however, the underlying mechanism remains unknown. Here we report the structure of a group II ECF transporter-pantothenate transporter from Lactobacillus brevis (LbECF-PanT), which shares the ECF module with the folate and hydroxymethylpyrimidine transporters (LbECF-FolT and LbECF-HmpT). Structural and mutational analyses revealed the residues constituting the pantothenate-binding pocket. We found that although the three EcfS proteins PanT, FolT, and HmpT are dissimilar in sequence, they share a common surface area composed of the transmembrane helices 1/2/6 (SM1/2/6) to interact with the coupling helices 2/3 (CH2/3) of the same EcfT. CH2 interacts mainly with SM1 via hydrophobic interactions, which may modulate the sliding movement of EcfS. CH3 binds to a hydrophobic surface groove formed by SM1, SM2, and SM6, which may transmit the conformational changes from EcfA/A' to EcfS. We also found that the residues at the intermolecular surfaces in LbECF-PanT are essential for transporter activity, and that these residues may mediate intermolecular conformational transmission and/or affect transporter complex stability. In addition, we found that the structure of EcfT is conformationally dynamic, which supports its function as a scaffold to mediate the interaction of the ECF module with various EcfS proteins to form different transporter complexes.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Proteínas de Bactérias
/
Simportadores
/
Levilactobacillus brevis
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Ano de publicação:
2014
Tipo de documento:
Article