Your browser doesn't support javascript.
loading
The ratcheted and ratchetable structural states of RNA polymerase underlie multiple transcriptional functions.
Sekine, Shun-ichi; Murayama, Yuko; Svetlov, Vladimir; Nudler, Evgeny; Yokoyama, Shigeyuki.
Afiliação
  • Sekine S; RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Structural and Synthetic Biology, RIKEN Ce
  • Murayama Y; RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Structural and Synthetic Biology, RIKEN Ce
  • Svetlov V; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
  • Nudler E; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
  • Yokoyama S; RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-ch
Mol Cell ; 57(3): 408-21, 2015 Feb 05.
Article em En | MEDLINE | ID: mdl-25601758
DNA-dependent RNA polymerase (RNAP) accomplishes multiple tasks during transcription by assuming different structural forms. Reportedly, the "tight" form performs nucleotide addition to nascent RNA, while the "ratcheted" form is adopted for transcription inhibition. In this study, we performed Cys-pair crosslinking (CPX) analyses of various transcription complexes of a bacterial RNAP and crystallographic analyses of its backtracked and Gre-factor-bound states to clarify which of the two forms is adopted. The ratcheted form was revealed to support GreA-dependent transcript cleavage, long backtracking, hairpin-dependent pausing, and termination. In contrast, the tight form correlated with nucleotide addition, mismatch-dependent pausing, one-nucleotide backtracking, and factor-independent transcript cleavage. RNAP in the paused/backtracked state, but not the nucleotide-addition state, readily transitions to the ratcheted form ("ratchetable"), indicating that the tight form represents two distinct regulatory states. The 3' end and the hairpin structure of the nascent RNA promote the ratchetable nature by modulating the trigger-loop conformation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Transcrição Gênica / RNA Polimerases Dirigidas por DNA / Thermus thermophilus Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Transcrição Gênica / RNA Polimerases Dirigidas por DNA / Thermus thermophilus Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2015 Tipo de documento: Article