Your browser doesn't support javascript.
loading
Facile fabrication of highly efficient g-C3N4/BiFeO3 nanocomposites with enhanced visible light photocatalytic activities.
Wang, Xingfu; Mao, Weiwei; Zhang, Jian; Han, Yumin; Quan, Chuye; Zhang, Qiaoxia; Yang, Tao; Yang, Jianping; Li, Xing'ao; Huang, Wei.
Afiliação
  • Wang X; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunic
  • Mao W; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunic
  • Zhang J; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunic
  • Han Y; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunic
  • Quan C; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunic
  • Zhang Q; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunic
  • Yang T; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunic
  • Yang J; School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, PR China.
  • Li X; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunic
  • Huang W; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunic
J Colloid Interface Sci ; 448: 17-23, 2015 Jun 15.
Article em En | MEDLINE | ID: mdl-25706200
Graphitic carbon nitride/bismuth ferrite (g-C3N4/BiFeO3) nanocomposites with various g-C3N4 contents have been synthesized by a simple method. After the deposition-precipitation process, the novel BiFeO3 spindle-like nanoparticles with the size of ∼100 nm were homogeneously decorated on the surfaces of the C3N4 nanosheets. A possible deposition growth mechanism is proposed on the basis of experimental results. The as-prepared g-C3N4/BiFeO3 composites exhibit high efficiency for the degradation of methyl orange (MO) under visible light irradiation, which can be mainly attributed to the synergic effect between g-C3N4 and BiFeO3. The ability to tune surface and interfacial characteristics for the optimization of photophysical properties suggests that the deposition growth process may enable formation of hybrids suitable for a range of photocatalytic applications based on g-C3N4.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2015 Tipo de documento: Article