Your browser doesn't support javascript.
loading
Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis.
Huang, Chun-Yen; Lin, Cheng-Huang; Lin, Hui-Chen.
Afiliação
  • Huang CY; Department of Life Science, Tunghai University, Taichung 40704, Taiwan; Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan; Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung 40704, Taiwan.
  • Lin CH; Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan.
  • Lin HC; Department of Life Science, Tunghai University, Taichung 40704, Taiwan; Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung 40704, Taiwan. Electronic address: hclin@thu.edu.tw.
Article em En | MEDLINE | ID: mdl-25783787
ABSTRACT
Aquatic air-breathing anabantoids, a group of fish species characterized by the presence of a labyrinth organ and some gills, exhibit morphological variations. This study aimed to examine whether unequal gill growth begins during the early stages and described the sequence of the early gill developmental events in Betta splendens and Macropodus opercularis. To determine when the ion regulatory and gas exchange abilities first appear in the gills, mitochondria-rich cells (MRCs) and neuroepithelial cells (NECs) were examined in young B. splendens. To evaluate the relative importance of the gills and the labyrinth organ under different levels of oxygen uptake stress, the levels of carbonic anhydrase II (CAII) and Na(+)/K(+)-ATPase (NKA) protein expressions in 2 gills and the labyrinth organ were examined in M. opercularis. We found that the first 3 gills developed earlier than the 4th gill in both species, an indication that the morphological variation begins early in life. In B. splendens, the MRCs and NECs clearly appeared in the first 3 gills at 4 dph and were first found in the 4th gill until 11 dph. The oxygen-sensing ability of the gills was concordant with the ionoregulatory function. In M. opercularis, the hypoxic group had a significantly higher air-breathing frequency. CAII protein expression was higher in the labyrinth organ in the hypoxic group. The gills exhibited increased NKA protein expression in the hypoxic and restricted groups, respectively. Functional plasticity in CAII and NKA protein expressions was found between the gills and the labyrinth organ in adult M. opercularis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixes Limite: Animals Idioma: En Revista: Comp Biochem Physiol A Mol Integr Physiol Assunto da revista: BIOLOGIA MOLECULAR / FISIOLOGIA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Taiwan

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixes Limite: Animals Idioma: En Revista: Comp Biochem Physiol A Mol Integr Physiol Assunto da revista: BIOLOGIA MOLECULAR / FISIOLOGIA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Taiwan