Your browser doesn't support javascript.
loading
Oxytocin enables maternal behaviour by balancing cortical inhibition.
Marlin, Bianca J; Mitre, Mariela; D'amour, James A; Chao, Moses V; Froemke, Robert C.
Afiliação
  • Marlin BJ; 1] Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA [2] Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA [3] Department of Otolaryngology, New York University School of Medicine, New York,
  • Mitre M; 1] Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA [2] Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA [3] Department of Otolaryngology, New York University School of Medicine, New York,
  • D'amour JA; 1] Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA [2] Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA [3] Department of Otolaryngology, New York University School of Medicine, New York,
  • Chao MV; 1] Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA [2] Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA [3] Department of Neuroscience and Physiology, New York University School of Medici
  • Froemke RC; 1] Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA [2] Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA [3] Department of Otolaryngology, New York University School of Medicine, New York,
Nature ; 520(7548): 499-504, 2015 Apr 23.
Article em En | MEDLINE | ID: mdl-25874674
Oxytocin is important for social interactions and maternal behaviour. However, little is known about when, where and how oxytocin modulates neural circuits to improve social cognition. Here we show how oxytocin enables pup retrieval behaviour in female mice by enhancing auditory cortical pup call responses. Retrieval behaviour required the left but not right auditory cortex, was accelerated by oxytocin in the left auditory cortex, and oxytocin receptors were preferentially expressed in the left auditory cortex. Neural responses to pup calls were lateralized, with co-tuned and temporally precise excitatory and inhibitory responses in the left cortex of maternal but not pup-naive adults. Finally, pairing calls with oxytocin enhanced responses by balancing the magnitude and timing of inhibition with excitation. Our results describe fundamental synaptic mechanisms by which oxytocin increases the salience of acoustic social stimuli. Furthermore, oxytocin-induced plasticity provides a biological basis for lateralization of auditory cortical processing.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Córtex Auditivo / Ocitocina / Comportamento Materno / Inibição Neural Limite: Animals Idioma: En Revista: Nature Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Córtex Auditivo / Ocitocina / Comportamento Materno / Inibição Neural Limite: Animals Idioma: En Revista: Nature Ano de publicação: 2015 Tipo de documento: Article