Your browser doesn't support javascript.
loading
The role of antioxidants in the chemistry of oxidative stress: A review.
Pisoschi, Aurelia Magdalena; Pop, Aneta.
Afiliação
  • Pisoschi AM; University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, sector 5, Bucharest, Romania. Electronic address: aureliamagdalenapisoschi@yahoo.ro.
  • Pop A; University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, sector 5, Bucharest, Romania.
Eur J Med Chem ; 97: 55-74, 2015 Jun 05.
Article em En | MEDLINE | ID: mdl-25942353
This Review Article is focused on the action of the reactive oxygenated species in inducing oxidative injury of the lipid membrane components, as well as on the ability of antioxidants (of different structures and sources, and following different mechanisms of action) in fighting against oxidative stress. Oxidative stress is defined as an excessive production of reactive oxygenated species that cannot be counteracted by the action of antioxidants, but also as a perturbation of cell redox balance. Reactive oxygenated/nitrogenated species are represented by superoxide anion radical, hydroxyl, alkoxyl and lipid peroxyl radicals, nitric oxide and peroxynitrite. Oxidative stress determines structure modifications and function modulation in nucleic acids, lipids and proteins. Oxidative degradation of lipids yields malondialdehyde and 4-hydroxynonenal, but also isoprostanes, from unsaturated fatty acids. Protein damage may occur with thiol oxidation, carbonylation, side-chain oxidation, fragmentation, unfolding and misfolding, resulting activity loss. 8-hydroxydeoxyguanosine is an index of DNA damage. The involvement of the reactive oxygenated/nitrogenated species in disease occurrence is described. The unbalance between the oxidant species and the antioxidant defense system may trigger specific factors responsible for oxidative damage in the cell: over-expression of oncogene genes, generation of mutagen compounds, promotion of atherogenic activity, senile plaque occurrence or inflammation. This leads to cancer, neurodegeneration, cardiovascular diseases, diabetes, kidney diseases. The concept of antioxidant is defined, along with a discussion of the existent classification criteria: enzymatic and non-enzymatic, preventative or repair-systems, endogenous and exogenous, primary and secondary, hydrosoluble and liposoluble, natural or synthetic. Primary antioxidants are mainly chain breakers, able to scavenge radical species by hydrogen donation. Secondary antioxidants are singlet oxygen quenchers, peroxide decomposers, metal chelators, oxidative enzyme inhibitors or UV radiation absorbers. The specific mechanism of action of the most important representatives of each antioxidant class (endogenous and exogenous) in preventing or inhibiting particular factors leading to oxidative injury in the cell, is then reviewed. Mutual influences, including synergistic effects are presented and discussed. Prooxidative influences likely to occur, as for instance in the presence of transition metal ions, are also reminded.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espécies Reativas de Oxigênio / Estresse Oxidativo Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Eur J Med Chem Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espécies Reativas de Oxigênio / Estresse Oxidativo Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Eur J Med Chem Ano de publicação: 2015 Tipo de documento: Article