Your browser doesn't support javascript.
loading
Silver catalyzed gallium phosphide nanowires integrated on silicon and in situ Ag-alloying induced bandgap transition.
Huang, Kangrong; Zhang, Zhang; Zhou, Qingwei; Liu, Liwei; Zhang, Xiaoyan; Kang, Mengyang; Zhao, Fuli; Lu, Xubing; Gao, Xingsen; Liu, Junming.
Afiliação
  • Huang K; Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, People's Republic of China.
Nanotechnology ; 26(25): 255706, 2015 Jan 26.
Article em En | MEDLINE | ID: mdl-26044077
ABSTRACT
In this work, we demonstrate a silver catalyzed heteroepitaxial growth of gallium phosphide nanowires (GaP NWs) on silicon. The morphology and growth direction of GaP NWs on differently orientated Si substrates were investigated. From crystallographic analysis, we inferred that Ag from catalyst is incorporated into the GaP during the chemical beam epitaxy (CBE) process. Using the PL spectrum and time-resolved emission spectroscopy, the optical properties of Ag-catalyzed GaP NWs were greatly modified, with bandgap transitions in the blue range. The Raman characterizations further confirmed the Ag incorporation into GaP during the growth. From the bandgap calculations, it was deduced that Ag was substituted on the Ga site with bandgap broadening. The in situ Ag-alloying during the growth of Ag-catalyzed GaP NWs greatly modified the band structure of GaP, and could lead to further applications in optoelectronics for low-dimensional GaP-based nanomaterials.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2015 Tipo de documento: Article