Your browser doesn't support javascript.
loading
Molecular mechanisms regulating impaired neurogenesis of fragile X syndrome human embryonic stem cells.
Telias, Michael; Mayshar, Yoav; Amit, Ami; Ben-Yosef, Dalit.
Afiliação
  • Telias M; 1 The Wolfe PGD-SC Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center , Tel Aviv, Israel .
  • Mayshar Y; 2 Department of Cell and Developmental Biology Sackler Medical School, Tel Aviv University , Tel Aviv, Israel .
  • Amit A; 1 The Wolfe PGD-SC Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center , Tel Aviv, Israel .
  • Ben-Yosef D; 1 The Wolfe PGD-SC Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center , Tel Aviv, Israel .
Stem Cells Dev ; 24(20): 2353-65, 2015 Oct 15.
Article em En | MEDLINE | ID: mdl-26393806
ABSTRACT
Fragile X syndrome (FXS) is the most common form of inherited cognitive impairment. It is caused by developmental inactivation of the FMR1 gene and the absence of its encoded protein FMRP, which plays pivotal roles in brain development and function. In FXS embryos with full FMR1 mutation, FMRP is expressed during early embryogenesis and is gradually downregulated at the third trimester of pregnancy. FX-human embryonic stem cells (FX-hESCs), derived from FX human blastocysts, demonstrate the same pattern of developmentally regulated FMR1 inactivation when subjected to in vitro neural differentiation (IVND). In this study, we used this in vitro human platform to explore the molecular mechanisms downstream to FMRP in the context of early human embryonic neurogenesis. Our results show a novel role for the SOX superfamily of transcription factors, specifically for SOX2 and SOX9, which could explain the reduced and delayed neurogenesis observed in FX cells. In addition, we assess in this study the "GSK3ß theory of FXS" for the first time in a human-based model. We found no evidence for a pathological increase in GSK3ß protein levels upon cellular loss of FMRP, in contrast to what was found in the brain of Fmr1 knockout mice. Our study adds novel data on potential downstream targets of FMRP and highlights the importance of the FX-hESC IVND system.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diferenciação Celular / Proteína do X Frágil da Deficiência Intelectual / Neurogênese / Células-Tronco Embrionárias Humanas / Síndrome do Cromossomo X Frágil Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Stem Cells Dev Assunto da revista: HEMATOLOGIA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Israel

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diferenciação Celular / Proteína do X Frágil da Deficiência Intelectual / Neurogênese / Células-Tronco Embrionárias Humanas / Síndrome do Cromossomo X Frágil Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Stem Cells Dev Assunto da revista: HEMATOLOGIA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Israel