Your browser doesn't support javascript.
loading
Fundamental limits of material toughening in molecularly confined polymers.
Isaacson, Scott G; Lionti, Krystelle; Volksen, Willi; Magbitang, Teddie P; Matsuda, Yusuke; Dauskardt, Reinhold H; Dubois, Geraud.
Afiliação
  • Isaacson SG; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, USA.
  • Lionti K; Hybrid Polymeric Materials, IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, USA.
  • Volksen W; Hybrid Polymeric Materials, IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, USA.
  • Magbitang TP; Hybrid Polymeric Materials, IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, USA.
  • Matsuda Y; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, USA.
  • Dauskardt RH; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, USA.
  • Dubois G; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, USA.
Nat Mater ; 15(3): 294-8, 2016 Mar.
Article em En | MEDLINE | ID: mdl-26569473
ABSTRACT
The exceptional mechanical properties of polymer nanocomposites are achieved through intimate mixing of the polymer and inorganic phases, which leads to spatial confinement of the polymer phase. In this study we probe the mechanical and fracture properties of polymers in the extreme limits of molecular confinement, where a stiff inorganic phase confines the polymer chains to dimensions far smaller than their bulk radius of gyration. We show that polymers confined at molecular length scales dissipate energy through a confinement-induced molecular bridging mechanism that is distinct from existing entanglement-based theories of polymer deformation and fracture. We demonstrate that the toughening is controlled by the molecular size and the degree of confinement, but is ultimately limited by the strength of individual molecules.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Teste de Materiais / Nanocompostos Idioma: En Revista: Nat Mater Assunto da revista: CIENCIA / QUIMICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Teste de Materiais / Nanocompostos Idioma: En Revista: Nat Mater Assunto da revista: CIENCIA / QUIMICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos