Your browser doesn't support javascript.
loading
Distinct cognitive effects and underlying transcriptome changes upon inhibition of individual miRNAs in hippocampal neurons.
Malmevik, Josephine; Petri, Rebecca; Knauff, Pina; Brattås, Per Ludvik; Åkerblom, Malin; Jakobsson, Johan.
Afiliação
  • Malmevik J; Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Sölvegatan 17, 221 84 Lund, Sweden.
  • Petri R; Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Sölvegatan 17, 221 84 Lund, Sweden.
  • Knauff P; Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Sölvegatan 17, 221 84 Lund, Sweden.
  • Brattås PL; Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Sölvegatan 17, 221 84 Lund, Sweden.
  • Åkerblom M; Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Sölvegatan 17, 221 84 Lund, Sweden.
  • Jakobsson J; Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Sölvegatan 17, 221 84 Lund, Sweden.
Sci Rep ; 6: 19879, 2016 Jan 27.
Article em En | MEDLINE | ID: mdl-26813637
ABSTRACT
MicroRNAs (miRNA) are small, non-coding RNAs mediating post-transcriptional regulation of gene expression. miRNAs have recently been implicated in hippocampus-dependent functions such as learning and memory, although the roles of individual miRNAs in these processes remain largely unknown. Here, we achieved stable inhibition using AAV-delivered miRNA sponges of individual, highly expressed and brain-enriched miRNAs; miR-124, miR-9 and miR-34, in hippocampal neurons. Molecular and cognitive studies revealed a role for miR-124 in learning and memory. Inhibition of miR-124 resulted in an enhanced spatial learning and working memory capacity, potentially through altered levels of genes linked to synaptic plasticity and neuronal transmission. In contrast, inhibition of miR-9 or miR-34 led to a decreased capacity of spatial learning and of reference memory, respectively. On a molecular level, miR-9 inhibition resulted in altered expression of genes related to cell adhesion, endocytosis and cell death, while miR-34 inhibition caused transcriptome changes linked to neuroactive ligand-receptor transduction and cell communication. In summary, this study establishes distinct roles for individual miRNAs in hippocampal function.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cognição / Células Piramidais / MicroRNAs / Transcriptoma Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Suécia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cognição / Células Piramidais / MicroRNAs / Transcriptoma Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Suécia