Your browser doesn't support javascript.
loading
Homochiral D4-symmetric metal-organic cages from stereogenic Ru(II) metalloligands for effective enantioseparation of atropisomeric molecules.
Wu, Kai; Li, Kang; Hou, Ya-Jun; Pan, Mei; Zhang, Lu-Yin; Chen, Ling; Su, Cheng-Yong.
Afiliação
  • Wu K; MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
  • Li K; MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
  • Hou YJ; MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
  • Pan M; MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
  • Zhang LY; MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
  • Chen L; MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
  • Su CY; MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
Nat Commun ; 7: 10487, 2016 Feb 03.
Article em En | MEDLINE | ID: mdl-26839048
ABSTRACT
Absolute chiral environments are rare in regular polyhedral and prismatic architectures, but are achievable from self-assembly of metal-organic cages/containers (MOCs), which endow us with a promising ability to imitate natural organization systems to accomplish stereochemical recognition, catalysis and separation. Here we report a general assembly approach to homochiral MOCs with robust chemical viability suitable for various practical applications. A stepwise process for assembly of enantiopure ΔΔΔΔΔΔΔΔ- and ΛΛΛΛΛΛΛΛ-Pd6(RuL3)8 MOCs is accomplished by pre-resolution of the Δ/Λ-Ru-metalloligand precursors. The obtained Pd-Ru bimetallic MOCs feature in large D4-symmetric chiral space imposed by the predetermined Ru(II)-octahedral stereoconfigurations, which are substitutionally inert, stable, water-soluble and are capable of encapsulating a dozen guests per cage. Chiral resolution tests reveal diverse host-guest stereoselectivity towards different chiral molecules, which demonstrate enantioseparation ability for atropisomeric compounds with C2 symmetry. NMR studies indicate a distinctive resolution process depending on guest exchange dynamics, which is differentiable between host-guest diastereomers.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China