Direction of information flow in large-scale resting-state networks is frequency-dependent.
Proc Natl Acad Sci U S A
; 113(14): 3867-72, 2016 Apr 05.
Article
em En
| MEDLINE
| ID: mdl-27001844
Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Mapeamento Encefálico
/
Lobo Frontal
/
Rede Nervosa
/
Vias Neurais
/
Lobo Occipital
Limite:
Humans
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Ano de publicação:
2016
Tipo de documento:
Article