Your browser doesn't support javascript.
loading
Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing.
Gökirmak, Tufan; Campanale, Joseph P; Reitzel, Adam M; Shipp, Lauren E; Moy, Gary W; Hamdoun, Amro.
Afiliação
  • Gökirmak T; Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and.
  • Campanale JP; Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and.
  • Reitzel AM; Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina.
  • Shipp LE; Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and.
  • Moy GW; Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and.
  • Hamdoun A; Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and hamdoun@ucsd.edu.
Am J Physiol Cell Physiol ; 310(11): C911-20, 2016 06 01.
Article em En | MEDLINE | ID: mdl-27053522
ABSTRACT
The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ouriços-do-Mar / Processamento Alternativo / Evolução Molecular / Proteínas Associadas à Resistência a Múltiplos Medicamentos Limite: Animals Idioma: En Revista: Am J Physiol Cell Physiol Assunto da revista: FISIOLOGIA Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ouriços-do-Mar / Processamento Alternativo / Evolução Molecular / Proteínas Associadas à Resistência a Múltiplos Medicamentos Limite: Animals Idioma: En Revista: Am J Physiol Cell Physiol Assunto da revista: FISIOLOGIA Ano de publicação: 2016 Tipo de documento: Article