Your browser doesn't support javascript.
loading
Unbiased estimation in seamless phase II/III trials with unequal treatment effect variances and hypothesis-driven selection rules.
Robertson, David S; Prevost, A Toby; Bowden, Jack.
Afiliação
  • Robertson DS; MRC Biostatistics Unit, Cambridge, U.K.
  • Prevost AT; Imperial College London, London, U.K.
  • Bowden J; MRC Biostatistics Unit, Cambridge, U.K.
Stat Med ; 35(22): 3907-22, 2016 09 30.
Article em En | MEDLINE | ID: mdl-27103068
Seamless phase II/III clinical trials offer an efficient way to select an experimental treatment and perform confirmatory analysis within a single trial. However, combining the data from both stages in the final analysis can induce bias into the estimates of treatment effects. Methods for bias adjustment developed thus far have made restrictive assumptions about the design and selection rules followed. In order to address these shortcomings, we apply recent methodological advances to derive the uniformly minimum variance conditionally unbiased estimator for two-stage seamless phase II/III trials. Our framework allows for the precision of the treatment arm estimates to take arbitrary values, can be utilised for all treatments that are taken forward to phase III and is applicable when the decision to select or drop treatment arms is driven by a multiplicity-adjusted hypothesis testing procedure. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Projetos de Pesquisa / Ensaios Clínicos Fase III como Assunto / Ensaios Clínicos Fase II como Assunto Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Stat Med Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Projetos de Pesquisa / Ensaios Clínicos Fase III como Assunto / Ensaios Clínicos Fase II como Assunto Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Stat Med Ano de publicação: 2016 Tipo de documento: Article