Your browser doesn't support javascript.
loading
Deep-sea diversity patterns are shaped by energy availability.
Woolley, Skipton N C; Tittensor, Derek P; Dunstan, Piers K; Guillera-Arroita, Gurutzeta; Lahoz-Monfort, José J; Wintle, Brendan A; Worm, Boris; O'Hara, Timothy D.
Afiliação
  • Woolley SN; Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia.
  • Tittensor DP; Quantitative and Applied Ecology Group, School of Biological Sciences, BioSciences Building 2, The University of Melbourne, Victoria 3010, Australia.
  • Dunstan PK; Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax B3H 4J1, Canada.
  • Guillera-Arroita G; United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge CB3 0DL, UK.
  • Lahoz-Monfort JJ; CSIRO, Wealth from Oceans Flagship, Hobart, Tasmania 7000, Australia.
  • Wintle BA; Quantitative and Applied Ecology Group, School of Biological Sciences, BioSciences Building 2, The University of Melbourne, Victoria 3010, Australia.
  • Worm B; Quantitative and Applied Ecology Group, School of Biological Sciences, BioSciences Building 2, The University of Melbourne, Victoria 3010, Australia.
  • O'Hara TD; Quantitative and Applied Ecology Group, School of Biological Sciences, BioSciences Building 2, The University of Melbourne, Victoria 3010, Australia.
Nature ; 533(7603): 393-6, 2016 05 19.
Article em En | MEDLINE | ID: mdl-27193685
The deep ocean is the largest and least-explored ecosystem on Earth, and a uniquely energy-poor environment. The distribution, drivers and origins of deep-sea biodiversity remain unknown at global scales. Here we analyse a database of more than 165,000 distribution records of Ophiuroidea (brittle stars), a dominant component of sea-floor fauna, and find patterns of biodiversity unlike known terrestrial or coastal marine realms. Both patterns and environmental predictors of deep-sea (2,000-6,500 m) species richness fundamentally differ from those found in coastal (0-20 m), continental shelf (20-200 m), and upper-slope (200-2,000 m) waters. Continental shelf to upper-slope richness consistently peaks in tropical Indo-west Pacific and Caribbean (0-30°) latitudes, and is well explained by variations in water temperature. In contrast, deep-sea species show maximum richness at higher latitudes (30-50°), concentrated in areas of high carbon export flux and regions close to continental margins. We reconcile this structuring of oceanic biodiversity using a species-energy framework, with kinetic energy predicting shallow-water richness, while chemical energy (export productivity) and proximity to slope habitats drive deep-sea diversity. Our findings provide a global baseline for conservation efforts across the sea floor, and demonstrate that deep-sea ecosystems show a biodiversity pattern consistent with ecological theory, despite being different from other planetary-scale habitats.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água do Mar / Biodiversidade / Equinodermos / Metabolismo Energético / Organismos Aquáticos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Nature Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água do Mar / Biodiversidade / Equinodermos / Metabolismo Energético / Organismos Aquáticos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Nature Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Austrália