The positional identity of iPSC-derived neural progenitor cells along the anterior-posterior axis is controlled in a dosage-dependent manner by bFGF and EGF.
Differentiation
; 92(4): 183-194, 2016.
Article
em En
| MEDLINE
| ID: mdl-27321088
Neural rosettes derived from human induced pluripotent stem cells (iPSCs) have been claimed to be a highly robust in vitro cellular model for biomedical application. They are able to propagate in vitro in the presence of mitogens, including basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). However, these two mitogens are also involved in anterior-posterior patterning in a gradient dependent manner along the neural tube axis. Here, we compared the regional identity of neural rosette cells and specific neural subtypes of their progeny propagated with low and high concentrations of bFGF and EGF. We observed that low concentrations of bFGF and EGF in the culturing system were able to induce forebrain identity of the neural rosettes and promote subsequent cortical neuronal differentiation. On the contrary, high concentrations of these mitogens stimulate a mid-hindbrain fate of the neural rosettes, resulting in subsequent cholinergic neuron differentiation. Thus, our results indicate that different concentrations of bFGF and EGF supplemented during propagation of neural rosettes are involved in altering the identity of the resultant neural cells.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Diferenciação Celular
/
Fator 2 de Crescimento de Fibroblastos
/
Fator de Crescimento Epidérmico
/
Neurogênese
/
Células-Tronco Neurais
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Differentiation
Ano de publicação:
2016
Tipo de documento:
Article