Your browser doesn't support javascript.
loading
A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis.
Noren, David P; Long, Byron L; Norel, Raquel; Rrhissorrakrai, Kahn; Hess, Kenneth; Hu, Chenyue Wendy; Bisberg, Alex J; Schultz, Andre; Engquist, Erik; Liu, Li; Lin, Xihui; Chen, Gregory M; Xie, Honglei; Hunter, Geoffrey A M; Boutros, Paul C; Stepanov, Oleg; Norman, Thea; Friend, Stephen H; Stolovitzky, Gustavo; Kornblau, Steven; Qutub, Amina A.
Afiliação
  • Noren DP; Rice University, Houston, Texas, United States of America.
  • Long BL; Rice University, Houston, Texas, United States of America.
  • Norel R; IBM Computational Biology Center, Yorktown Heights, New York, United States of America.
  • Rrhissorrakrai K; IBM Computational Biology Center, Yorktown Heights, New York, United States of America.
  • Hess K; The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
  • Hu CW; Rice University, Houston, Texas, United States of America.
  • Bisberg AJ; Rice University, Houston, Texas, United States of America.
  • Schultz A; Rice University, Houston, Texas, United States of America.
  • Engquist E; Rice University, Houston, Texas, United States of America.
  • Liu L; Arizona State University, Tempe, Arizona, United States of America.
  • Lin X; Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
  • Chen GM; Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
  • Xie H; Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
  • Hunter GA; Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
  • Boutros PC; Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
  • Stepanov O; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
  • Friend SH; Sage Bionetworks, Seattle, Washington, United States of America.
  • Stolovitzky G; Sage Bionetworks, Seattle, Washington, United States of America.
  • Kornblau S; IBM Computational Biology Center, Yorktown Heights, New York, United States of America.
  • Qutub AA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America.
PLoS Comput Biol ; 12(6): e1004890, 2016 06.
Article em En | MEDLINE | ID: mdl-27351836
Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the quantitative means to do so have yet to be developed. Here we report the results and insights gained from the DREAM 9 Acute Myeloid Prediction Outcome Prediction Challenge (AML-OPC), a crowdsourcing effort designed to promote the development of quantitative methods for AML prognosis prediction. We identify the most accurate and robust models in predicting patient response to therapy, remission duration, and overall survival. We further investigate patient response to therapy, a clinically actionable prediction, and find that patients that are classified as resistant to therapy are harder to predict than responsive patients across the 31 models submitted to the challenge. The top two performing models, which held a high sensitivity to these patients, substantially utilized the proteomics data to make predictions. Using these models, we also identify which signaling proteins were useful in predicting patient therapeutic response.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Avaliação de Processos e Resultados em Cuidados de Saúde / Algoritmos / Proteoma / Crowdsourcing / Esclerose Lateral Amiotrófica Tipo de estudo: Diagnostic_studies / Etiology_studies / Evaluation_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Avaliação de Processos e Resultados em Cuidados de Saúde / Algoritmos / Proteoma / Crowdsourcing / Esclerose Lateral Amiotrófica Tipo de estudo: Diagnostic_studies / Etiology_studies / Evaluation_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos