Your browser doesn't support javascript.
loading
In situ detoxification of dry dilute acid pretreated corn stover by co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae increases ethanol production.
Zhu, Jia-Qing; Li, Xia; Qin, Lei; Li, Wen-Chao; Li, Hui-Ze; Li, Bing-Zhi; Yuan, Ying-Jin.
Afiliação
  • Zhu JQ; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 30007
  • Li X; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 30007
  • Qin L; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 30007
  • Li WC; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 30007
  • Li HZ; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 30007
  • Li BZ; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 30007
  • Yuan YJ; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 30007
Bioresour Technol ; 218: 380-7, 2016 Oct.
Article em En | MEDLINE | ID: mdl-27387414
ABSTRACT
Co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae was developed for bioethanol production from undetoxified pretreated biomass in simultaneously saccharification and co-fermentation (SSCF) process. Glucose accumulation during late fermentation phase in SSCF using xylose-utilizing strain can be eliminated by the introduction of inhibitor-tolerant strain. Effect of different ratios of two strains was investigated and xylose-utilizing strain to inhibitor-tolerant strain ratio of 101 (w/w) showed the best xylose consumption and the highest ethanol yield. Inoculating of xylose-utilizing strain at the later stage of SSCF (24-48h) exhibited lower ethanol yield than inoculating at early stage (the beginning 0-12h), probably due to the reduced enzymatic efficiency caused by the unconsumed xylose and oligomeric sugars. Co-culture SSCF increased ethanol concentration by 21.2% and 41.0% comparing to SSCF using individual inhibitor-tolerant and xylose-utilizing strain (increased from 48.5 and 41.7g/L to 58.8g/L), respectively, which suggest this co-culture system was very promising.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Xilose / Carboidratos / Etanol / Fermentação / Glucose Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Xilose / Carboidratos / Etanol / Fermentação / Glucose Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2016 Tipo de documento: Article